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ABSTRACT 

The research presented in this thesis may be divided into three areas; derivative theory, 

transition metal chemistry, and solvation effects. 

Analytic derivatives. A derivation of the closed shell frozen-core analytic gradient for 

second order M0ller Plesset perturbation (MP2) theory is presented, as well as a derivation of 

an expression for the localized orbital dipole polarizability. Both methods have been 

implemented in the electronic structure code GAMESS and are currently in wide use. 

Transition metal chemistry. Ab initio electronic structure theory methods have been 

used to investigate the chemistry of simple titanium compounds. These include the closed shell 

TiHt dimen Ti2H8; the diradical TiHs dimen Ti2H6; and the closed shell TiX4 dimers: Ti2X8 

(X = F, CI, Br). Both the hydride dimers contain 2 electron, 3 center bonds analogous to those 

in diborane. Ti2H6 is a model compound for more complex di-titanium(III) bridged systems. 

We have accurately calculated the isotropic singlet-triplet energy gap in Ti2H6 (1.43 kcal/mol) 

and in addition calculated anisotropic effects due to spin-orbit coupling between ground and 

excited states. Calculations on TiX4 dimers establish the possibility of halide exchange and 

thereby explain unexpected NMR line widths observed for TICU-

Solvation Studies. The effective fragment potential (EFP) method is used to study the 

effects of solvating water molecules on the Menshutkin reaction between ammonia and methyl 

bromide. The effects, relative to the gas phase reaction, of two, four, six, and eight water 

molecules are examined. The EFP method is found to reproduce all ab initio calculations very 

accurately at a fraction of the cost. 
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CHAPTER 1. GENERAL INTRODUCTION 

I. General Overview 

My interests in the field of theoretical chemistry are widespread; however, they may 

be encompassed by three areas of study: energy derivative theory, transition metal chemistry, 

and solvation effects. The general motivation behind these areas of smdy follows, with 

subsequent description of specific research projects, the results of which are presented in this 

dissertation. 

a) General Motivation. The importance of analytic energy derivatives in theoretical 

chemistry cannot be overstated- Having found the wavefimction for a particular molecular 

system (albeit an approximation to the exact wavefimction) and thereby having found the 

energy, one would almost always like additional information. Energy derivatives can provide 

a wealth of such information. The first derivative of the energy with respect to a nuclear 

coordinate perturbation (the energy gradient) helps locate and then identifies stationary points 

on potential energy surfaces. The first derivative of the energy with respect to an electric field 

perturbation determines the electric dipole moment. Information fi-om energy second 

derivatives with respect to these perturbations includes: characterization of stationary points 

(minimum, transition state, or higher order saddle point), harmonic vibrational fiequencies, 

infirared intensities, and electric polarizabilities. 

These energy derivatives can, in principle, be evaluated from the energy by using 

numeric finite difference methods. However, these methods are very inefficient and often 

present problems with accuracy and stability. It is absolutely essential, then, to be able to 

compute energy first derivatives analytically, and it is highly desirable for energy second 

derivatives. 
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Transition metal systems are rich with exciting and vital chemistry. From active sites 

in enzymes to catalysts in conntless industrial processes, their importance is only exceeded 

by their complexity. Much of their chemical behavior is poorly understood; one of the many 

reasons for this is the difficulty their description presents to theoretical chemistry 

methodology. This is partly due to their size (> 20 electrons), and partly due to the complex 

waveftmctions needed to describe the near degenerate energy levels which result from 

partially filled and non-bonding d-orbitals commonly found in these systems. One approach, 

which I have taken, is to start with simple transition metal systems, establish the levels of 

theory needed for a reliable description, examine and learn from their chemical behavior, and 

then apply the knowledge gained to slighdy more complex systems, and so on. This seems an 

especially important approach given the increasing application of density functional methods 

to open shell transition metal systems, often without thought to the method's adequacy. 

The determination of solvation effects on chemical processes is one of the greatest 

challenges to computational chemistry. Even though the majority of chemical processes take 

place in solution the overwhelming majority of ab initio calculations carried out so far have 

been restricted to gas phase systems. This is because the inclusion of more than a handful of 

solvent molecules in computationally demanding ab initio calculations is intractable. A 

number of methods have been developed in which the solute is treated ab initio and solvent 

molecules are represented by potentials. I have been involved in the development of one such 

method: the effective fragment potential (EFP) method. This method is an imponant step in 

accurate but inexpensive modeling of solvation effects. 

While even on their own these three fields are challenging and important, their 

combination to constimte the smdy of potential energy surfaces and molecular properties of 

transition metal systems in solution is a particularly exciting prospect to me. 
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b) Specific Research Projects. 

Analytic Derivatives. As stated above, in order to explore potential energy surfaces 

and molecular properties efficiently one must be able to compute analytic energy derivatives. 

Two derivations of such analytic expressions are presented along with test cases: a derivation 

of the closed shell frozen-core second order Moller-PIesset perturbation theory (MP2) 

analytic gradient, and a derivation of the analytic expression for localized orbital dipole 

polarizabilities. 

MP2 is the most efficient method of introducing dynamic electron correlation effects 

into ab initio molecular orbital calculations. It is clearly desirable to have the ability to 

calculate MP2 analytic energy gradients, as the effects of dynamic electron correlation can 

have a large effect on molecular structure. Inclusion of core electrons in the perturbation 

treatment, however, has little effect on molecular structure and their exclusion (frozen-core) 

leads to a saving in computational effort. Therefore, the ability to calculate the closed shell 

frozen-core MP2 analytic energy gradient is important. There are no derivations of this 

method available in the literature. A detailed derivation of the closed shell frozen-core MP2 

analytic gradient expressions, which was used to implement the method in the electronic 

structure code GAMESS, is presented. 

The dipole polarizability is a measure of how easily the molecular electronic charge 

distribution can be distorted in an electric field. Calculation of localized orbital dipole 

polarizabilties corresponds to partitioning the total polarizability into contributions from 

cores, bonds, and lone pairs. This information is important as one can then easily identify 

polarizable parts of molecules and also monitor the transferability of bond and lone pair 

polarizabilities between different molecules. In addition, we use localized orbital dipole 

polarizabilities to introduce polarization effects into the effective fragment potential (EFP) 

solvation model. Localized orbital dipole polarizabilities may be calculated by a numeric 

finite-field difference method; however, this method is cumbersome for molecules containing 
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more than a few atoms and is difBcult to automate. Analytic calculation of these 

polarizabilities is therefore preferred. 

Transition Metal Chemistry. The application of ab initio molecular orbital 

calculations to the chemistry of transition metals has been some what limited until recent 

years. This is due both to the size and complexity of transition metal systems which have, in 

the past, rendered accurate calculations impossible. Due to the high performance of modem 

computers, as well as the development of parallel algorithms, usefiil and reliable ab initio 

calculations on transition metal systems are becoming more common. 

Much of this research focuses on elucidating mechanisms of catalysis. The attraction 

of knowing in detail how a catalyst works is obvious: if the mechanism is known it is easier 

to improve efficiency and even tailor ftmctionality of the catalyst to produce, for example, 

only certain conformations of the product molecule. However, ab inito calculations can also 

fiimish information on the fimdamental chemistry of transition metals. The papers presented 

in this dissertation, then, do not deal with specific catalyzed systems but are concerned with 

simple systems containing titanium; more specifically titanium dimer systems with bridging 

bonds between the titanium centers. These papers represent part of a systematic smdy of such 

systems which will serve to establish adequate levels of theory to describe titanium chemistry 

and also examine the behavior of titanium centers in various chemical environments. It is 

clear that observed behavior in such studies will be valuable when addressing specific 

catalyzed systems and may also lead to predictive rules concerning the chemistry of titanium 

in general. 

Solvation Studies. In 1891 Menshutkin discovered that the nature of a chemical 

reaction cannot be separated from the medium in which it is carried out. Most chemical 

reactions occur in solution; therefore another important challenge for computational 

chemistry is the accurate treatment of solvation effects. A systematic way to understand the 

effect of solvation on a chemical reaction is to smdy the gas phase reaction first, then add 
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solvent molecules a small number at a time (micro-solvation) and monitor the effect on the 

potential energy surface. However, calculations in which both the solute and surrounding 

solvent molecules are treated ab initio become intractable, due to computational expense, 

after only a handful of solvent molecules are included. The effective fragment potential 

(EFP) method has recently been developed to treat the solute ab initio and the solvent 

molecules through inexpensive but accurate potentials added as one-electron terms directly to 

the ab inito Hamiltonian. Work concerning the polarizabilty term in this method is presented, 

as well as an application of the method to the determination of solvation effects in an 

interesting test case: the Menshutkin reaction between ammonia and methyl bromide. 

n. Dissertation Organization 

The formulas for energy first derivatives of SCF wavefimctions are well established 

and are relatively simple. The formulas for MP2 and CI wavefimctions are more complex, 

but are known when all electrons are correlated. However, when core (or virtual) orbitals are 

frozen, this introduces an added complexity to the formulas. Explicit derivations of the 

formulas are not available for the MP2 frozen-core gradient and those for the CI froze-core 

gradient lack detail. Chapter 2 in this dissertation shows in detail a derivation of the frozen-

core gradient for closed shell MP2 wavefimctions. 

Chapters 3,4, 5, and 6 are application papers on simple titanium dimer systems. 

Chapter 3 introduces the simplest possible titanium dimer - the closed shell Ti2H8. Chapters 

4 and 5 address the more complex diradical system Ti2H6. In chapter 6 the effect of 

introducing halides are examined with a smdy on the dimers of TiX4 (X = F, CI, Br). 
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Chapter 7 examines the methodology to account for polarization effects in the 

effective fragment potential (EFP) method. Also included in chapter 7 is a derivation of an 

analytic expression to calculate localized orbital dipole polarizability tensors. 

Chapter 8 is an application of the EFP method to the Menshutkin reaction. This is 

intended as a stringent test of the model as the products are highly charged. Performance in 

terms of accuracy and computational expense is evaluated by comparison to all ab initio 

calculations. 

Chapter 9 contains general conclusions based on Chapters 2-8. 

m. Theoretical Background 

The non-relativistic time-independent Schrodinger equation ^ may be written as 

= (1) 

where H is the Hamiltonian operator and 4* is the total wavefiinction. It is only possible to 

solve equation (1) analytically for a two body system, for example the hydrogen atom. 

Therefore, in order to find solutions we must make a series of well defined approximations. 

a) The Bom-Oppenlieimer Approximation. If we invoke the Bora-Oppenheimer 

approximation;^ that is we assume that the electrons are moving much faster than the nuclei 

in a molecule, the nuclear repulsion energy becomes a constant at a fixed geometry. 

^nuc. n * 
(2) 
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where N is the number of nuclei, Z\ is the atomic number of nucleus A, and R\b is the 

distance between nuclei A and B. Then we need only solve equation (1) for the electronic 

Hamiltonian , 

1 rt n  S  T  I f  

(3) 
^ • i A 'iA i>i ij 

where n is the number of electrons, Vf is the Laplacian operator for the ith electron, ria is the 

distance between the /th electron and nucleus A, rij is the distance between the ith andyth 

electrons. The first term in equation (3) represents the kinetic energy of the electrons, the 

second term the potential energy due to nuclear-electronic interactions, and the third term the 

potential energy due electron-electron repulsion. 

b) The Hartree-Fock Self-Consistent Field Method. Because of the electron-

electron repulsion interaction a three-body term remains in equation (3) and the Schrodinger 

equation (equation (1)) remains non-solvable. In Hartree-Fock theory^''^ this n-electron 

system is separated in to n one-electron systems which can be solved for exacdy, 

F^. =e.^. 1 = 1,2 n , (4) 

where F is the Fock operator and£, are orbital energies. 

The one-electron wavefiinctions i f f .  are the Hartree-Fock orbitals and may be 

conveniently represented by linear combinations of known fiinctions x,, centered on the 

nuclei of the molecule,^ 

II 

(5) 
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These basis functions usually take the form of Gaussian ftmctions, 

= (6) 

where is a normalization constant, and I, m, and n are integers. The variable a is 

determined by atomic calculations. Equation (5) is then a linear combination of atomic 

orbitals and is referred to as the LCAO molecular orbital (MO) approximation. When this 

approximation is introduced into the Hartree-Fock equations (equation (5)) the exact Hartree-

Fock wavefiinction is found only with a complete or infinite basis set (in practice it is 

possible to converge to the Hartree-Fock limit with a large well chosen finite basis set). 

When deriving the Hartree-Fock equations, the total wavefiinction is required to be an 

antisymmetrized product of spin-orbitals. 

4'(jr,,.r,) = -*P(x2,x,) (7) 

Such an antisymmetrized wavefiinction may be described by a Slater determinant. The 

antisyimnetrization requirement ensures that the Pauli exclusion principle is obeyed: that is. 

no two electrons with the same spin can be found at the same point in space. The Hartree-

Fock wavefiinction, then, correlates electrons with the same spin. 

The Hartree-Fock operator, F, does not account for instantaneous electron-electron 

repulsion between electrons of opposite spin; each electron feels an average field due to all 

the other electrons (dependent on the coordinates of only one electron). In order to know the 

average field felt by a particular electron one must already know the orbitals describing all 

the o±er electrons, therefore F is dependent on its own eigenfiinctions and the Hartree-Fock 

equations (equation (4)) must be solved iteratively to self-consistency. 
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The Hartree-Fock wavefunction is the underlying wavefunction used in much of the 

work presented in this dissertation. Closed-shell calculations in which paired electrons 

occupy the same spatial orbital are termed restricted Hartree-Fock (RHF) equations. Open-

shell calculations in which paired electrons occupy the same spatial orbital and unpaired 

electrons each have their owner spin orbital are termed restricted open-shell Hartree-Fock 

(ROHF) calculations. 

c) Correlation Energy. As mentioned above, the Hartree-Fock method does not 

correlate electrons with opposite spin; therefore, it over estimates the electron-electron 

repulsion potential energy. There are various post-Hartree-Fock methods to include the 

effects of electron correlation. 

Configuration Interaction (CI). The form of the exact wavefimction (for a complete 

basis set) within the Bom-Oppenhiemer approximation is that of a fiiU CI. A ftill CI is a 

linear combination of all possible determinants.'^ These determinants may be described by 

reference to the Hartree-Fock determinant Tq 

i<«'>=<^ol*o>+S<|i';)+Ics|>f';)+ 5;c|'px)+ m 
ra a>b a<b<c 

r<s r<s<t 

The energy Efrci obtained from a full CI is the exact energy for the given basis set within the 

Bom-Oppenhiemer approximation. The correlation energy is defined as the difference 

between the exact energy and the Hartree-Fock energy, Eg ,6 

ĉorr. ~ F̂Cl ~ 0̂ * (9) 

In practice full CI is prohibitively expensive except for very small systems. It is therefore 

common to truncate equation (8) at single and double excitations. 
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Multiconfiguration Self Consistent Field (MCSCF) Theory. The Hartree-Fock 

wavefiinction can fail qualitatively if any occupied and unoccupied Hartree-Fock orbitals are 

quasi-degenerate. This situation arises, for example, during the process of making and 

breaking bonds or in diradical systems. In an MCSCF calculation this problem is solved by 

including determinants (configurations) in which these quasi-degenerate orbitals are 

occupied. The CI coefGcients and the orbital coefficients are then found variationally so as to 

minimize the energy. 

The orbitals and electrons which vary among these configurations define an active space (the 

inactive orbitals are always doubly occupied). If all possible determinants within the active 

space are included, that is a full CI within the active space, this is called a fiilly optimized 

reaction space (FORS) MCSCF.^ This is the MCSCF method used in some of the work 

presented in this dissertation. 

The correlation energy recovered due to treating the quasi-degeneracy problem is 

called static or non-dynamic electron correlation energy. 

M0ller-Plesset Perturbation Theory. Moller-Plesset theory^ was developed as a 

Rayleigh-Schrodinger perturbation treatment of interacting particles in atoms and molecules 

in which the unperturbed wavefiinction is that from a Hartree-Fock calculation. 
A 

The exact Hamiltonian, H, is written as zeroth order Hamiltonian, Hq, which recovers 

the Hartree-Fock energy, plus a perturbation, V, which is the difference between the exact 

electron-electron interaction and that described by the zeroth order Hamiltonian, 

(10) 
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( I D  

n  n / 2 n / 2  n l l n l l  

(12) 

n  n / 2  n / 2  

=14+11(2./,-«•,). (13) 
' ' / 

i  ' i t  t  i  •>j ij < / 

(14) 

Where J and AT are the coulomb and exchange integrals, respectively, and n is the number of 

electrons. The exact wavefunction and energy are expanded in a Taylor series and after 

truncation at the «th order and collection of terms, zeroth to «th order energy terms are 

recovered. Carrying the expansion to 2nd order gives: 

where is the Hartree-Fock energy, the first order term, £j", is zero and £j"' is the first 

non-zero correction to the Hartree-Fock energy; the MP2 energy correction.^ The MP2 

energy correction recovers up to eighty percent of the correlation energy and the method is 

widely used due to its computational efficiency relative to CI methods. This kind of electron 

correlation, which arises due to instantaneous interactions between electrons of opposite spin, 

is referred to as dynamic electron correlation. 

For the above MP2 perturbation treatment to be valid the Hartree-Fock wavefunction 

must provide a qualitatively correct description of the system. Perturbative methods have 

been developed in which the zeroth order wavefimction can be multiconfiigurational. One 

such method is multiconfigurational quasidegenerate second order perturbation theory 

(15) 
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(MCQDPT). The MP2 and MCQDPT methods are used in work presented in this 

dissertation. 
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CHAPTER 2. A DERIVATION OF THE CXOSED SHELL 

FROZEN-CORE MP2 ANALYTIC GRADIENT 

A paper to be submitted to Chemical Physics 

S. P. Webb, G. D. Fletcher, M. S. Gordon. 

Abstract 

A detailed derivation of the closed shell frozen-core MP2 analytic gradient is 

presented. The summation ranges and modification of the MP2 gradient terms which are a 

result of the frozen-core approximation are clearly identified. Timings from full and frozen-

core MP2 gradient calculations on the molecule silicocene are also presented. 

I. Introduction 

The analytic expression for the derivative of the full MP2 energy (all electrons 

correlated) with respect to nuclear coordinate displacement has long been known. ^ With the 

development and implementation of more efficient methodology and algorithms^ has come 

the widespread use of MP2 gradients to include the effects of dynamic electron correlation in 

the determination of molecular structure. The recent development of parallel algorithms^- * 

has greatly extended the size of the systems to which the method can be applied. 

Usually the effects of including dynamic correlation in the inner shell or core 

electrons of a molecule are minimal in terms of relative energies and geometry parameters, 

and therefore core electrons are often not included in the perturbation treatment; this is 

known as the frozen-core approximation. In addition to an associated reduction in 

computational effort,^ the frozen-core approximation can be preferable to full MP2. as the 
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description of core electrons is of lower qualiQr than the description of valence electrons in 

many basis sets. 

The modification of the MP2 energy expression to exclude core electrons is a trivial 

matter which requires simply that the summation over occupied orbitals excludes those 

chosen to be frozen (see equation (28)). The associated reduction in the number of 

transformed two-electron integrals required results in reduction of the CPU time needed for 

the calculation. The modification of the MP2 gradient expression, however, is far from 

trivial. 

Handy et al have already addressed the problem of frozen-cores for the CI gradient 

expression and have suggested that the MP2 expression may be found in an analogous 

fashion.5 In this paper the analytic frozen-core MP2 gradient expressions for closed shell 

systems are derived in detail to facilitate serial and parallel implementation of this method in 

GAMESS.® No explicit derivation of the analytic frozen-core MP2 gradient expression is 

currently available in the literature. Serial algorithm timings on the molecule silicocene are 

presented to illustrate time savings achieved due to the frozen-core approximation. 

n. Theory 

(a) Notation, Definitions, and Techniques. First we introduce the notation, 

definitions, and techniques which will be used extensively during the course of the derivation 

of the MP2 frozen-core gradient. Extensive use is made of the excellent book by Yamaguchi 

et al.^ 
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Notation. 

(i) Indices. 

fg 

i,j, k, I 

a, b, c, d 

p, q, r, s 

f l ,  V ,  k,  a  

superscript ^ 

superscript ( X )  

frozen-core molecular orbital (MO) 

any occupied MO 

virtual MO 

any MO 

atomic orbital (AO) 

derivative with respect to nuclear 

displacement x 

derivatives of AO integrals only 

(ii) Summation ranges. 

act. - active MOs (usually valence orbitals) 

core - frozen-core MOs (usually inner shells) 

occ. - all occupied MOs 

virt. virtual MOs 

all - all MOs 

(iii) Symbols. 

{pq\rs) - electron repulsion integral (ERI) in the MO 

basis 

- one-electron Hamiltonian integral 

Sp, - overlap integral 

Cp - RHF orbital energy 

- orbital response to nuclear displacement x 

\p) - MO in bra-ket notation 
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L - so called MP2 Lagrangian 

Definitions. 

(i) The MP2 amplitude is defined as: 

T* =[2(u^b)-(ma)y (1) 

where 

Df (2) 

(ii) Derivatives with respect to a perturbation x. 

The derivative of an MO is given by (reference 7, chapter 3): 

/3I n\ (y >^0 
Sc» =ic»'+xc;iM> 
\ II J ft ft 

AO all all 

=b>'"+IIfic»=|pr+X£';i9). (3) 
1 

It follows, then, that 

alt ail 
\ (x )  

{pqlrsY = {pq\rs) " + X S (^'1") 
f f 

all all 

•^^K[p4fs)-^'%Ul{pq\rt). (4) 

The derivative of the orthonormality constraint 5^, = yields 

W +5<''=0. M <a> w (5) 
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(iii) Coupled Perturbed Hartree-Fock (CPHF) equations (reference 7, chapter 10). We write 

where 
virt. occ. 

c k 

= ̂ {p&s) - (pf]qs) - (H^r), (8) 
OCC. 

tl 

The CPHF equations are then written as: 

A'U''=B^ (II) 

where 

Kibj = . (12) 

Note that: £p=Qlp. (13) 

Techniques. 

There are several important tools, some familiar and some less well known, that we 

summarize here. 

(i) Interchange of indices due to equivalence on summation. 

e-g. = (14) 
ab ttb 

5)[(/'a|yfc) + (/a[/'^»)] = 2^(1" a\jb) (15) 
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(ii) Splitting summations. 

k^i k>i k<i 

(16) 

(iii) The chain rule. 

dx 

f 1 ^ 3 r 1 ^ dC^ ij _ 11 
[ o f )  

[K)' (17) 

(iv) Cross-multiplication. 

I 1 Df-jy^ p -e gg _i ^ ^ •! — fc/ 
/^ai D"* n"^ rj"'' ^ij ^kj ^ij ^kj ^ij ^kj 

(18) 

(v) Z-vector method (reference 7, chapter 18). 

XWL sL''U' ta^a *•' ^ 
la 

AV'=B' 

where 

z'' = UA'-' 

A"^Z = L 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 
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the elements of Z are obtained from solution of linear equation (25) and the contribution 

from equation (19) is evaluated as: 

yWL B^Z (26) ta^ta ^ ' 

la ia 

(b) The General Form of the MP2 Gradient. When written in the AO basis the 

MP2 energy gradient takes the general form which applies to all analytic first derivatives 

with respect to a nuclear displacement x. 

AO AO AO 

tD! IIV livka 

In practice equation (27) is evaluated by forming the density matrices in the MO basis and 

back transforming to the AO basis for contraction with AO integral derivatives. The task 

ahead, then, is to derive the MO counterparts of the density matrices in equation (27): the 

one-particle density matrix the energy-weighted density matrix and the two-

particle density matrix with the appropriate restrictions to introduce the frozen-core 

approximation. 

(c) Expansion in Terms of Orbital Rotations. The first step in the derivation is to 

take the derivative of the frozen-core MP2 energy expression and expand the resulting 

derivative MOs in terms of orbital rotations (equations (3) and (4)). The frozen-core closed 

shell MP2 energy is given by: 

act, virr. 

= (28) 
1/ ab 
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Taking ttie derivative witti respect to nuclear displacement .r gives: 

OCT. VIIT. f n 

E"'' =i;£ • (29) 
ij ab'- ^ 

The amplitude derivative is 

(7f)" =[2(ic^b)' -(;%)']/£^ +[2(/al/ft)-(/6l/<-)|l/£^)'. (30) 

Substituting equation (30) into (29), and recognizing that with the interchange a<-^b the first 

term of (30) yields a term equivalent to the first term (in the square brackets) of (29), gives: 

acT. virt. act, vin. 

= 2 X 2  +  Z  £  ( i a \ } y p . ( i a \ j b )  - (/^'l/a)](l/ Df)'. (31) 
ij ab ij ab 

Applying the chain-rule (equation (17)) to the second term of (31) yields 

act, virt. act, vtn. 

=2ii(faW'7'-xi(MWir(pf)7z^*. (32) 
ij ab if ab 

We now substitute expressions for ERI derivatives (equation (4)), thereby introducing the 

unknown expansion coefficients or orbital responses (£>^'')'is replaced with specific 

orbital energy derivatives (equation (2)), 

£""'=2X£7;*' 
ij ab 

all 

{ia\jb)" +J^u;,{payb)+^u;^(ipyb)+^u;^'a\pb) 
p p p 

(33) 
ij ab 
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Since the summation ranges of i and j are identical, as are those for smnmations over a and b, 

equation (33) simplifies to: 

acr. vtrr. 

ij ab 

all aU 

{ia\jb)" + 2^ u;,{pa\jb) +2^ (ipifb) 

D' 
ij ab ^ij 

(34) 

Next, we split the MO derivative expansions into core, active, and virtual ranges: 

UCt. VUl. 

£•=''=221?:, 
// ab 

occ. 

{i-Ail>) *2^Ul(g^b)-^2Y,Ul,(h^b)^2Y^U:,{ca\jb) 
g k c 

V-I#T, 1 acr. vriT. (Z„\ fU\ 

•<-2j,UL{ikiib)*2f,U'„{icyb) -e:). (35) 
c J '7 iJ 

The occupied MOs are split into core and active orbitals, as some of the techniques used in 

the next section require that indices run over the same summation ranges, for example k and / 

both run over active MOs in equation (35). 

(d) Removal of Unknown Responses and Singularities. We now proceed to remove 

the unknown occupied-occupied and virtual-virmal orbital responses in equation (35) by 

using equation (6). Potential singularities introduced by these substimtions are also 

addressed. 

Starting with the active-active term in equation (35), we split its summations 

according to equation (16) (note that this can only be done because the summation ranges of 

k and i are equal in equation (35)), 

act. act. act. 

£ a ; ( f a . W = + S c / i - C f a i i / i . ) + u-{iayb). 
k k>i k<i 

(36) 
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Substituting (36) back into equation (35 and substituting for(equation 5) yields the 

following active-active expression: 

act. virr. act 

1/ ab k ij ab k<i 

ij ab 

(37) 

By interchanging / in the sum over < / in equation (37) we arrive at 

acT. Virr. act act. virr. act. 

"ISX TfVi{k4Ji>)=4£££[£/;.7:*'(fa.l/i)+ 
fj ab k ij ab k>i 

act, virr. 

-2££4"3f(MW- (38) 
ij ab 

Substituting foraccording to equation (5) switches the sign, and i and k, in this response 

term and introduces an off diagonal overlap term, 

act. virr. act act, virf. act. 

"SSI - uiT^(iAib)\ 
ij ab k ij ab k>i 

act. virr. act, act, vm. 

-4£££si"7j'(,v.i/A)-2|;£4"7:fHy(.). os) 
ij ab k>i ij ab 

By recalling equation (1) and interchange of a and 6 in the second term in square brackets, 

the numerators of the terms multiplying the responses in equation (39) are equivalent and 

may be combined. In addition the two overlap terms may be combined. 

aa. virr. act act. virr. aa. ft .I 

''SSS'ff'i(*»W=4SSSf'i("H2(fa'W-(<*N 
ij ab k if ab k>i ^ J 
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aa. W/T. 

ijk ab 

We now substitute for£/^according to equation (6) and cross-multiply (equation (18)) 

enabling cancellation of the orbital energy terms which result in singularities when MOs k 

and i are degenerate. The first term in equation (40) is then 

aa. vin. act. /^x (^ ^ 

-*lI.I.7^dHJbp{koyb)-{kl^a)]i^ 
ij ab k>i ej Ujj u^. 

act, vin. act. 

=-4£££aj7?(MW/of. (41) 
iJ ab k>i 

Now, by substitutingfore;' (equation (13)) in the last term of equation (35) and combining 

with equation (41) we arrive at 

acT. virt. act. act, vtit. 

££ q; J? ii«Ub)/Df - 2££ 
ij ab k>i ij ab 

(«) 
iji ab ^ij 

where we have expanded the sum over k to include all active orbitals and divided by 2. 

The virmal-virtual rotations are dealt with in an exactly analogous marmer. As a result 

of ±e positive signs of the virtual orbital energies the cross multiplication step (equations 

(40) - (41)) results in the opposite sign to the active-active case 

act, vm. act. act, vtn. 

' • £ £ £ & ' ; ? ' + 2 £ £ ! x , j r  
ij ab Oa ij ab 

=2£ia'r^- (43) 
D' ij abc 
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We now return to the frozen core-active term which was separated from the active-active 

term in equation (35). Splitting the term into two equal parts and substimting for using 

equation (5) in one of these parts, and then making the appropriate substimtions according to 

equation (6) gives: 

acr. Wrr. core acr. virr. core 

ij at g ij ab g 

acr. virr. core acr. virr. core 

= 2'ZY.j:.U-,Tf{g4Jb) -
ij ab g ij ab j? 

aa. virr. core 

(45) 
ij ab g 

aa. virr. core 

ij ab g fcjfJ 

aa. virr. core 

ij ab g 

aa. vtrr. core 

ij ab g 

It is not possible to remove the orbital energies which could potentially produce singularities. 

As mentioned previously this requires indices which run over equal ranges which g and i do 

not. However, as Handy et al^ point out for the CI case, if the core and active MOs are 

chosen sensibly (usually chemical cores and valence orbitals) g and i should never be 

degenerate and singularities are always avoided. 

(e) Identifying Density Matrices. The general form of the energy derivative 

(equation (27)) enables identification of density matrices. Any term which multiples the one-

electron derivative integrals defined as an MP2 density correction termPp'^'. Likewise 

any term which multiplies the overlap derivative is an energy-weighted density correction 

term .8 
PH 
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By inspection of equation (42) and by recalling that the definition ofQ^ (equation 

(7)) contains H^'(equations (9) and (10)) the active-active MP2 density correction is 

defined as 

(47) 
ijk ab U 

the core-active MP2 density correction by inspection of equation (46), is defined by 

acT. virr. core act, core 

(48) 
/> ab g \^i ^gj t g 

Note that /^j^''is identical to An active-active energy-weighted density correction 

(it is labeled [/] as additional terms, which are labeled [//] and [///], follow) is defined by 

inspection of the second term in equation (40), 

-2££4"7J'(raW = (49) 
ijk ab ki 

The third term in equation (45) defines 

act. v^. core 

it ab g i g 

Virtual-virtual densities P^^''and W^„"'may be defined in an exactly analogous manner. 
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(f) The Z-Vector Method, MP2 Lagrangian, and CPB[F Equations. If the 

relevant substitutions into equation (34) are made the derivative of the frozen-core MP2 

energy at this point in the derivation is given by: 

i) ab ij ab 

act, core act, core act, virt. 

t g t g ij abc 

OCT. vin. QCC. act, vtrr. 

+2££37'('<'W"- <5u 
ij ab k ij ab 

The remaining unknowns are now occupied-virtual orbital responses such as those in the 7th 

and 8th terms in equation (51) - and U^. In addition, the substitutions made above to 

remove occupied-occupied and virmal-virtual orbital responses (equation(6)) introduced 

occupied-virtual responses through equation (7) (1st, 2nd, and 5th terms of equation (51)). 

The occupied-virmal responses must be solved for using the CPHF equations 

(equation (11)). The number of unknown response vectors may be reduced from 3N, where N 

is the number of atoms, to 1 by use of the Z-vector method of Handy^ (equations (19) - (26)). 

The procedure is as follows: (i) define the MP2 Lagrangian by collecting terms 

(52) 
ia 

(ii) solve the following set of simultaneous equations (equation (25)) for Z 

A'^Z = L, (53) 

(iii) evaluate the contribution to the gradient from equation (52) according to equation (26) 

and, recalling the definition of the one-particle density and the expression for (equation 

(9)), thereby determine 
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I =S s; =S • '54) 
ai at at 

Before carrying out the above procedure on equation (51) we must apply equation (5) to the 

8th term in order to switch the response indices. In doing so we also introduce an occupied-

virtual energy-weighted density term 

act. vtrT. occ, act, vtn. occ. 

ij ab k ij ab k 

act, vin. occ. 

(55) 
ij ab k 

Now, we substitute equation (55) into (51) and proceed with step (i) by substimting for 

according to equation (7) and grouping terms. 

act. vtn. act. vin. 

ij ab ij ab 

act, core act, core vin. occ. 

i g i g at 

Vtn. occ. 

c k 

tfcr. vin. 

vtn. act. vin. 

S /S" Am+S - 45 X T^'iikiib) 
ij ab ij b 

where 

j ab 

(1 , {oTk = active 

0 , for it = core 

act, vin. 

+2££('«Lift)'V- <56) 
ij ab 

The terms in the square brackets in equation (56), then, define the MP2 Lagrangian (see 

equation (52)). Moving to steps (ii) and (iii), the following CPHF equations are solved to find 

the occupied-virtual blocks of the density (indices are re-labeled and signs are changed on 

both sides of equation (57)), 
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b j 

where 

virt. OCC. 

= (57) 

wyw. mtMl . uv« . >ti t. 

jk be jk b 

aa. vtrr. 

-"Ml'fW- (58) 
/ be 

where A/, is defined analogously to in equation (56). 

(g) Additional Energy-Weighted Density Terms. In equations (54) and (56) the 

MP2 density correction terms /^' are multiplied by (defined in equation (9)) giving rise 

to additional energy-weighted density terms which are labeled [//] and [///] (see section h)). 

Making the appropriate substimtions forfl^ according to equation (9), the MP2 frozen-core 

gradient expression is now. 

'/ ti 
occ. vtrr. occ. 

+s s- s - Mi/)]] 
I a ki 

virt. occ. 

•'•t.f'J'lfJ'- - (o*|i'')l] 
ah 

act. 

ij ab i X a k 

act, virt. 

+ 2£|;(/al/6)"V- (59) 
ij ab 
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(h) Summary of the One-Particle Gradient. Before addressing the two-particle 

gradient we summarize the frozen-core MP2 one-particle gradient and its terms. 

MP2 density correction terms. 

gf= core-core = 0 (60) 
act. vtrr. 

gi = core-act. 

acT. vin. 

ij^scu-aa. '^-'=-222lf(k^b)/D^ (62) 
k ab 

act. vin. 

af. = virt.-virt. P'J;'= (63) 
jt c 

ai = virt.-core (64) 

MP2 energy-weighted density correction terms. 

[/] terms: 
OCT. Vtrr. 

ij = act.-occ. = -2YLTt{ja\kb) (65) 
b ab 

acf. vifT. 

a^; = virt.-virt. = (66) 
1/ c 

act. virt. 

a< = vin.-occ, = (67) 
Ji b 

[//] terms: 

ij = act.-occ. +f;) (68) 

ab = virt.-vin. + ej (69) 

ai - virt.-occ. (70) 

[///] terms: 
all 

ij^occ.-Qcc. W5->[///] = -£p^''[2(p^lzy)-(p/1^)] (71) 
w 
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The total one-particle energy gradient is obtained by first back-transforming the complete 

MP2 density correction and energy-weighted density correction W^'to the AO-basis. 

Note that contributions from equation (57) to and contributions from equations (67) and n 

(70) to are for virtual-occupied only. S5anmetrization of and is customary prior 

to the back transformation, and is necessary in the case of/^' to apply equation (71). 

all 

='Lc„C^P'̂ '. (72) 
P<t 

all 

(73) 

These second order corrections are added to the corresponding SCF densities. 

(74) 

(75) 

where 
OCC. 

= (76) 
k 

occ. 

(77) 

and the final MP2 densities/'^"''*and are contracted with the one-electron Hamiltonian 

derivatives and overlap derivatives 5^^', respectively. 

(i) Frozen-Core MP2 Two-Particle Gradient. The 1st, 2nd, 3rd, and 8th terms of 

equation (59) contain ERI AO derivatives. The 8th term yields the so-called "non-separable" 

two-particle density. 
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acT. vin. AO 

2SIf Ic«C„C^C„(/iv|A<7)' 
ij ab itvJuT 

,(J:> 

AO 

= I (/»1M 25;XQC„c^c^7;f 
ftvXa if ab J (78) 

which corresponds to a back-transformation of the MP2 amplitudes. 

Assuming a symmetrized P'"'the first three terms (in equation (59)) yield the so-

called "separable" two-particle density. Substimting forin these terms according to 

equation (10) gives: 

-(pW"} 
W  M  L t  

(79) 

The core-Hamiltonian term has been dealt with; the two-electron part may be written as 

follows: 

all occ. { AO 

S'S'S -C,QC^C,)(/<v|A<r)'"[ 
pq k [/xvAff J 

AO f aU occ. 1 

= I(/iv|A<T)'" -C.C^QC.) 
tivla 

AO 

PR 

all 

= S(^vIAct)"" 2 Xc„c, I-
ttvhJ 1 V w V k 

all 

\ P9 

OC.C. 

(80) 

(81) 

(82) 

fivia ^ "J 
(83) 

In summary, the two-particle density consists of a separable term and a non-separable term. 
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_ ps 
fivMT fivXa 

(84) 

where. 

(85) 

r";S,=2££c„c„c^c„7y. 
ij ab 

(86) 

In practice equation (84) must be synmietrized according to the ERI permutational 

s)mimetries being exploited in the particular algorithm. 

The total frozen-core two-particle gradient is evaluated by adding the SCF two-

particle density. 

and then contracting with the two-electron AO derivatives. 

We now have all the terms necessary for the evaluation of the closed shell frozen core 

MP2 gradient (equation (27)). 

m. Reduction in Computational Effort 

Having identified the summation ranges we now examine the reduction in 

computational effort required for the frozen-core MP2 gradient computation compared to that 

required in the full MP2 gradient computation. 

(a) Time Savings in the Two-Electron Transformation. Inspection of the last two 

terms in the MP2 Lagrangian (equation (57)), the occupied-occupied blocks of the MP2 

p.WP2 _ p(2) ^ (87) 
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density correction (equations (61), (62), and (63)), and all the MP2 energy-weighted density 

correction [/] terms (equations (65), (66), and (67)), reveals that their formation requires a 

subset of the transformed integrals required for the corresponding full MP2 terms. 

(//v|A<t) {j[\qr) full MP2 : j = occ.,p = all,q=^all,r = all 

frozen core MP2: J = act,p — act. + virt,q = all,r = all. 

The above transformation may be carried out by first performing a one-index transformation 

producing integrals of the type (yvjAcr), with the remaining indices transformed step-wise to 

produce the full set. ̂ 0 

If Aa is treated as a combined index, the memory required to hold all (yv|Acr) 

integrals is bfi(N+l)n/2, where ATis the number of basis fimctions, and n is the number of 

active orbitals (for full MP2, /i is all occupied orbitals). The reduction in memory 

requirements on going from fiill MP2 to frozen-core MP2, then, is N^(N+l)C/2 where C is 

the number of frozen cores. Usually, even with such a reduction, an inadequate amount of 

memory is available and the transformation is carried out in batches. So, more important than 

the memory reduction just described is the time savings which are a consequence of a 

reduction of the number of batches on going from fiill MP2 to frozen-core MP2. 

As many active orbitals j as are allowed by the available memory are transformed at 

a time. The minimum memory requirement is then bfi(N-^l)/2 for one orbital to be 

transformed per batch (this is the same for the fiill and frozen-core cases). This requires n 

batches for the full transformation. Clearly, then, by reducing n from all occupied orbitals in 

the full MP2 to only active occupied orbitals in the frozen-core MP2, the number of batches 

required is reduced (by C in the minimum memory case) which can result in substantial time 

savings (see Section V). 



www.manaraa.com

34 

(b) Time Savings in the Two-Particle Gradient The aon-separable term of the two-

particle gradient (equation (78)) corresponds to a back-transformation of the MP2 

ampiimdes. As in the two-electron transformation described above, this back-transformation 

usually requires a batched scheme. As the occupied summation in equation (78) is only over 

active occupied orbitals the frozen-core scheme again results in fewer batches and therefore 

substantial time savings. 

(c) Terms tliat Must be Determined in tlie AO Basis. Inspection of the CPHF 

equations (equation (57)), the 1st term in the MP2 Lagrangian (equation (58), and the energy-

weighted density [///] correction term (equation (71), reveals that MO integrals of the type. 

[j^qr] where j = occ.,p-all,q = all,r = alL 

are required in the frozen-core MP2 as well as the full MP2. If one wishes to take advantage 

of the savings in computational effort discussed above these terms must be evaluated in the 

AO basis. 

Both Frisch et al2 and Dupuis^ l have described the formation of the first two terms of 

the MP2 Lagrangian (equation (58)) in the AO basis. It is done by forming a Fock-like 

matrix. 

AO 

(88) 

where 
AO AO 

O w = - X  v x "  •  (89) 
be 
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Frisch et afi also describe how to solve the CPHF equations in the AO basis. Equation (57) is 

re-written as: 

and the first term is evaluated with a trial again by forming a Fock-like matrix. The 

resulting P^pis used as the next trial and the process is repeated until self-consistency. 

Once the solution is obtained andis completed, the energy-weighted density [///] term 

(equation (71)) may be formed in the AO basis, again by formation of a Fock-like matrix. 

IV. Timings 

The molecule silicocene (see Figure 1) was chosen as a test case to demonstrate the 

reduction in computational effort due to the frozen-core approximation. A 6-3 lG(d) basis set 

was employed giving rise to 189 basis functions. Two calculations were carried out: one full 

MP2 single-point gradient, and one frozen-core MP2 single-point gradient. The number of 

core orbitals in silicocene is 15; the number of valence orbitals is 27. Therefore, fiill MP2 

calculation involves 42 active occupied orbitals, and the frozen-core MP2 calculation 

involves 27 active occupied orbitals. The minimum amount of memory required for these 

calculations is ~ 4 Mwords; SMwords were available, therefore only one occupied orbital 

could be transformed per batch. 

Table 1 shows the timings for the two calculations. The transformation steps in which 

the number of batches required is reduced from 42 in the fiiU MP2 to 27 in the frozen-core 

MP2 are clearly the origin of the overall speed up by a factor of 1.5. 

(90) 
b i 
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In order to implement the frozen-core MP2 gradient into GAMESS it was necessary 

to derive the expression from scratch, as no details of summation ranges and other 

modifications resulting from the approximation are available in the literature. We have 

presented the derivation here in detail. 

Having determined the appropriate expressions and their summation ranges, we have 

examined the reduction in computational effort resulting from the frozen-core approximation. 

The main reduction is that in time due to the decrease in the number of batches required in 

transformation steps. Test calculations on sihcocene show that this time reduction can be 

considerable, especially when the memory available is close to the minimum required. 
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Table 1. The total and a breakdown of CPU time in seconds for the full and frozen-core MP2 
single-point gradient calculations on silicocene (SiCCsHs)^). The basis set is 6-3lG(d), 
resulting in 189 basis functions. All calculiations were carried out on an IBM RS60(X)/350. 

Step in Algortithm 

CPU Time / s 

Fun MP2 Gradient 
Speed up 

2-Electron Transformation^ 
+ MP2 Energy 6673.9 3993.6 1.67 

CPHF 473.1 440.0 1.08 

2-Electron Gradient<i 12595.5 8650.9 1.46 

Total 19742.5 13084.5 1.51 

a step includes batched tranformation with 42 batches required for the full MP2 case 
and 27 required for the frozen-core case. 
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Silicocene Si(C5H5)2 

Figure 1. The C2v isomer of silicocene. 
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CHAPTER 3. THE DIMERIZATION OF TiH4 

A paper published in and reprinted with permission from 

Journal of the American Chemical Society 1995, 117,7195-7201 

Copyright 1995 American Chemical Society 

Simon P. Webb and Mark S. Gordon 

Abstract 

Ab initio electronic structure calculations using a triple zeta plus polarization basis set. 

second order perturbation theory, and coupled cluster theory show the dimerization of TiH4 to 

be kinetically and thermodynamically very favorable. Six minima have been found on the 

potential energy surface of TiiHg: two with double hydrogen bridges and four with triple 

hydrogen bridges. This potential energy surface is very flat suggesting rapid inter-conversion 

between these isomers is possible. The large thermodynamic driving force for dimerization (up 

to -46.1 kcal/mol on the classical surface) is attributed to both electrostatic effects and the 

electron deficiency of titanium. 

I. Introduction 

During recent years there has been a significant increase in the number of experimental 

studies of transition metal hydrides.This is indicative of increasingly sophisticated techniques 

such as low temperature matrix isolation,! which facilitate study of these often highly unstable 



www.manaraa.com

41 

but important compounds. Theory has a vital role to play both in interpretation of experiment 

and as a predictive tool; however, adequate ab initio calculations on transition metal hydrides 

have proved challenging. It seems then, that careful systematic theoretical investigation of the 

simplest transition metal hydrides is necessary as a foundation for work on more complex 

systems. 

This work is highly desirable in view of the fact that molecular species containing Ti-H 

bonds are rich with exciting chemistry but are often not well characterized or understood.2 

Their role as catalysts in reactions such as hydrosilation.3 and poljonerization of olefins'^ is of 

particular interest. The ability of some of these compounds to reduce molecular nitrogen has 

been demonstrated;'^'^ obviously, successful modification of these species to facilitate a 

catalytic role in this reaction would be of tremendous importance, but difficult without a solid 

understanding of basic titanium hydride chemistry. 

There have been a nimiber of theoretical smdies on TiHi,® and on the titane molecule 

TiH4.7 These smdies of simple titanium hydrides have yielded fundamental and pertinent 

information on the nature of Ti-H bonding. Only two experimental studies of TiH4 have been 

found in the literature: the formation of TiH4 from the decomposition of a TiCl4-H2 mixture at 

low pressures in 1963 by Breisacher and Siegel,8 and a low temperature matrix study of the 

reaction between naked Ti atoms and Ha-' In the latter, the reaction products have been 

characterized by infrared spectroscopy. The spectra are complex with broad features making 

interpretation difficult. 

A number of titanium hydrides are known to exist as dimers with bridging 

hydrogens.2.io Titanium is also known to form hydrogen bridging bonds with other 

elements,^.!! for example in (t|5 -C5H5)2TiBH4 titanium is bonded to boron through a double 

hydrogen bridge. A thorough understanding of the simplest titanium hydride dimers will be 
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useful when considering the many transition metal species containing similar three center, two 

electron bonding arrangements. 

Titanium has valence electron configuration 4s23d2 compared to 2s-2p^ and 3s-3p- of 

its highly studied group IVA analogs carbon and silicon. A recent study 12 has explored the 

impact of the differences between the s^d^ and s2p2 electronic configurations of these elements 

on the structures they form. In this paper we continue this exploration. It is well known that the 

saturated molecules CH4 and SiH4 show no propensity to dimerize; however, this is not the 

case for T1H4. We report here results of a detailed ab initio analysis of the potential energy 

surface of the isomers of Ti^Hg which show that the dimerization of TiH; is 

thermodjoiamically and kinetically very favorable. Calculated infrared frequencies are also 

reported for comparison with experiment.9 

n. Computational Methods 

Preliminary calculations were performed on TiHj and TiiHg using multi-configurational 

SCF (MCSCF) wave functions and Huzinaga's 21 split valence basis set.i3 For TiH4 an 8 

electron, 8 orbital active space was used for geometry optimization. This includes all valence 

electrons and allows all Ti-H bonds to be correlated. A natural orbital analysis shows that the 

maximum occupation of any virtual orbital is 0.07 electrons, with a total of only 3.1% of the 8 

valence electrons outside the closed shell configuration. For TiaHg a full valence 16 electron, 

16 orbital MCSCF active space is beyond our capabilities; however, a smaller well chosen 

active space was thought sufficient to estabUsh the nature of the wavefunction. Therefore, we 

elected to carry out a single point singles and doubles configuration interaction (CI) calculation 

at the RHF geometry using the 16 valence electrons (8 EIHF orbitals) as a reference, with 
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excitation into ail virtual orbitals. A natural orbital analysis of this CI wavefimction was then 

used to choose the 12 'most active' natural orbitals. These were then used as a starting point 

for a 12 electron, 12 orbital MCSCF calculation. A natural orbital analysis of the resulting 

MCSCF wavefimction revealed the largest occupation of the virtual orbitals to be 0.12 and 

0.11; again only 3.1% of the active space electrons are outside the closed shell configuration. It 

is therefore concluded that the single determinant Hartree-Fock self consistent field (SCF) 

wavefimction is an adequate reference for the system under investigation. 

Then for titanium a triple zeta with polarization (14s 1 Ip6d/10s8p3d) basis was 

employed which consists of Wachter's basis seti'^ with two additional p fimctions'S and a 

diffuse d fimction.i6 For hydrogen, Dunning's basis seti^ (5slp/3slp) was used. Collectively 

this basis set for titanium and hydrogen will be referred to as TZVP. For final single point 

energies one set of f fimctions (af=K).4)i8 was added to the titanium basis. This basis set will 

be referred to as TZVP(f). 

Geometry optimizations were carried out at the RHF and second order perturbation 

theory (MP2)19 levels. Stationary points were characterized as minima or transition states by 

calculating and diagonalizing the matrix of the energy second derivatives (hessian). Single 

point energies were calculated at the coupled cluster (CCSD(T))20 level of theory, with final 

CCSD(T) calculations employing the TZVP(f) basis set. All RHF and MCSCF calculations 

were done using GAMESS;2i the MP2, and CCSD(T) calculations using GAUSSIAN 92.— 
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ni. Results and Discussion 

TiH4. Both RHF and MP2 predict TiHj to be tetrahedral, with a Ti-H bond length of 

1.70 A (Rgure 1). These are in good agreement with the results of Schaefer and Thomas.^ 

The total energies (given in Table 1) and bond lengths of TilU will be used as a baseline 

against which Ti2Hg isomers can be compared. 

Ti2Hg. The geometries for the double hydrogen bridged (^-H)2 and triple hydrogen 

bridged (H-H)3 minima on the TioHg potential energy surface are shown in Figure 2. Attempts 

were made to find (^i-H)4 bridged structures; however, no such structures were found. Before 

considering the (|i-H)2 and (M.-H)3 bridged structures explicitly, we discuss the pathways 

leading from TiH4 + TiH4 —» Ti2H8. 

(a) Constrained Optimizations. Continuous 'downhill' paths to dimerization 

were found via a series of constrained geometry optimizations at the RHF/TZVP level, 

followed by MP2/I ZVP single point energy calculations. These constrained optimizations were 

carried out by starting from the RHF/TZVP optimized minima of interest, increasing the Ti-Ti 

separation in small intervals, and at each interval keeping this Ti-Ti separation fixed while 

minimizing the energy with respect to all other bond lengths and angles. 

Plots of the MP2/TZVP single point energies versus the Ti-Ti separation which 

correspond to dissociating the dimers Cs(l) (Figure 2c) and Cs(4) (Figure 2f), can be seen in 

Figure 4a and Figure 4b respectively. The reverse of this separation process is a path to 

dimerization. Structures along these dimerization paths can be seen in Figures 5a and 5b. In 

Figure 5a the two Tilij fragments approach each other in a staggered conformation. A 
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hydrogen on one TilU (which has a partial negative charge) points directly at the titanium on 

the other TiHt (which has a partial positive charge) and so an attractive interaction occurs. It 

can be seen from Figure 4a that this initial interaction and the subsequent formation of a second 

bridging bond continuously lowers the energy until a (|i-H)2 minimum is reached at Ti-Ti 

-3.10 A. A small barrier to formation of the lower energy (H-H)3 structure is then encountered. 

The situation in Figure 5b is somewhat different. Here the two TiH4 fragments approach each 

other in an eclipsed conformation. Again the initial interaction is between a hydrogen from one 

TiH4 and the titaniimi from the other TiH4. Then two other hydrogens form bridging bonds 

simultaneously and a (n-H)3 structure is formed directly. Figure 4b shows this process lowers 

the energy continuously. 

It is important to note that although these paths to dimerization are probably not the 

only ones and may not be the lowest energy paths, as the geometries are not optimized at a 

correlated level of theory, they do establish the fact that dimerization can occur with no barrier. 

(b) Minima and Transition States. MP2/TZVP bond lengths and angles are 

shown in Figure 2 for all minima and Figure 3 for all transition states. Energies are given in 

Table 2. 

Two (U-H)2 isomers were discovered: a C2v structure with eclipsed terminal hydrogens 

(Figure 2a) and a Cih structure with staggered terminal hydrogens (Figure 2b). The Ti-H bond 

length for the terminal hydrogens in these structures is very similar to that found in the 

monomeric TiJit; however, for the bridging hydrogens the Ti-H distance is lengthened 

considerably (0.15 A). This is consistent with the findings for other cases of 3 center, 2 

electron bonding such as the prototypical B2H6.^^ The two isomers are essentially 

isoenergetic (Table 2). This may be explained by the large separation of terminal hydrogens on 
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one titanium center from those on the other, thus avoiding the hydrogen-hydrogen interactions 

which affect the relative stabilities of (for example) staggered and eclipsed ethane. Inter-

conversion of these (ji-H)2 isomers proceeds via the transition state T.S.( 1) (Figure 3a) with 

effectively no barrier (see Table 2 and Figure 6) suggesting totally free rotation. The internal 

rotation in (m.-H)2 Ti2H8 may be represented schematically as follows: 

The absence of a barrier to rotation may be explained by the large distances between vicinal 

hydrogens and by the availability d orbitals which facilitate isoenergetic bonding for any 

rotational arrangement of the terminal hydrogens. Formation of both these dimers is exothermic 

relative to the separated monomers by -37 kcal/mol on the classical potential energy surface 

(Table 2 and Figure 6a) and by -34 kcal/mol on the adiabatic ground state surface (zero point 

vibrational energy included) (Table 2 and Figure 6b) at the CCSD(T)/TZVP(f) level of theory. 

It may be noted (as it has been previously23a) that dynamic electron correlation plays a vital role 

in the quantitative description of three center, two electron bonding. The dimerization energy of 

TiH4 is -14 kcal/mol more exothermic at all correlated levels of theory than at the RHF/TZVP 

level of theory. 

Four (M.-H)3 isomers with Cs synmietry were found: Cs(l), Cs(2), Cs(3), and Cs(4) 
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corresponding to Figures 2c, d, e, and f. These four Cj isomers differ primarily in the 

orientation of their terminal hydrogens. All four of these structures are several kcal/mol lower 

in energy than the (M.-H)2 isomers, with Cs(2) appearing to be the global minimum.Transition 

state T.S.(2) (Figure 3b) connects the (|x-H)2C2h isomer (Figure 2b) with the (M.-H)3 Cs( I) 

isomer (Figure 2c), as shown schematically below. 

The energy barrier for this process (Table 2 and Figure 6) is 1.9 kcal/mol and 1.8 

kcal/mol on the classical and adiabatic ground state potential energy surfaces, respectively. The 

reverse barriers are 8.3 kcal/mol and 6.0 kcal/mol for the classical and the adiabatic ground 

state surfaces, respectively. 

The (|i-H)3 stmctures are local minima corresponding to different rotational orientations 

of their terminal hydrogens. It is evident from Figure 6 that the potential energy surface 

connecting these isomers is quite flat and rapid inter-conversion should be possible via 

transition states T.S.(3), T.S.(4), and T.S.(5) (Figures 3c, d, and e), as shown below for the 

MP2 surface. 

T.S.(2) 
293.2 i cm*' 

Qd) 
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Cs(l) T.S.(3) 
100-8 i cm I 

Q(2) 

CA2) T.S.(4) 
53.9 I cm -I 

Q(3) 

Q(2) T.S.(5) 
157.6 i cm"  ̂

Cs(4) 

Again, this flat surface is indicative of the ability of d orbitais to form bonds with similar 

energy for a range of terminal hydrogen positions. 

Figure 6 shows that the (^i-H)3 isomers are even more stable relative to the separated 
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monomers than their (^i-H)2 counterparts, Cs(2) (the global minimum) being 46.1 kcal/mol 

more stable than 2TiH4 on the classical surface at the CCSD(T)/TZVP(f) level of theory. This 

can be attributed to the extra stabilizing effect of the third bridging bond, and titanium's desire 

for high coordination numbers. Dynamic correlation again plays an important role in describing 

the bridging bonds. At the RHF/TZVP level the (M.-H)3 isomers are in fact higher in energy 

than the (ji-H)2 isomers. This reversal in the relative stabilities of the (Ji-H)2 and ((i-H)3 

isomers is due to the effects of dynamic electron correlation. Even using MP2/TZVP single 

point energies at RHF/TZVP geometries, the (H-H)3 Cs(l) isomer is 5.9 kcal/mol more stable 

than the (H-H)2 Cih isomer. The Cs(l) isomer is stabilized by a fiirther 2.2 kcal/mol relative to 

the C2h isomer with the contraction of its three center bonds on MP2 geometry optimization. 

Because the potential energy surface in the (M.-H)3 region is so flat, single point energy 

calculations at higher levels of theory and incorporation of vibrational zero point corrections 

reverses the order of several stationary points. Indeed, at the CCSD(T)/TZVP(f) + ZPE level of 

theory, T.S.(3) drops I kcal/mol below Cs(2). So, very high levels of theory and anharmonic 

vibrational effects are needed to obtain a highly accurate representation of the (^-H)3 bridging 

region of the surface. Nonetheless, it is clear that in general, the dimerization of 2TiH4 to 

Ti2H8 is highly exothermic. 

(c) Bonding in Ti2H8 . In order to gain some insight into the nature of the bonding 

in these Ti2H8 isomers, particularly the three center bonds, the RHF/TZVP molecular orbitals 

of two minima, Cih (Figure 2b) and Cs( 1) (Figure 2c) at their MP2/TZVP geometries, were 

localized using the method of Edmiston and Ruedenberg-S-^ In addition, Mulliken populations 
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and charges were calculated using the MP2 density to give some indication of the degree of 

polarity in the bonds. 

None of the localized molecular orbitals for either of the two structures show any direct 

Sigma titanium-titanium interaction; all LMO's are titanium-terminal hydrogen interactions, or 

three center, two electron Ti-H-Ti interactions. Figure 7a shows a localized molecular orbital 

corresponding to one of the three center, two electron bonds in the C2h structure, and Figure 

7b shows a plot of the total electron density in this isomer. The total density plot shows ample 

evidence of a H-Ti-H bridging bond even though, as noted above, the Ti-H distance is 

considerably longer than is seen in an ordinary bonding situation. Figure 8a shows the 

localized molecular orbital corresponding to the three center bond in the Q plane in the 

structure Cs(l). Plots of the total density can be seen in Figure 8b i) and ii). Three center, two 

electron bonding is clear here as well. There is some distortion of the three center bonds, due to 

the unequal numbers of terminal hydrogens oii the two titanium centers. There is clearly more 

electron density between the bridging hydrogens and the titanium with only two terminal 

hydrogens (the titanium center on the left), producing a short bond/long bond arrangement in 

the bridges. 

Calculated Mulliken charges for the C2h (Figure 2b) and Cs(l) (Figure 2c) isomers are 

shown in Table 3. Mulliken charges for diborane (B2H6) calculated with an equivalent basis set 

to that used for Ti2H8 are also shown for comparison. According to the Mulliken charges 

diborane has little ionic character (of course this is open to debate; Cioslowski and McKee23b 

use a Bader type analysis and conclude that B2H6 is "quite ionic"). The Ti2H8 isomers exhibit 

a higher degree of bond polarization (although the out-of-plane Ti-H-Ti interactions in Cs( I) 

are much less polar than those for the other bridging bonds seen in Table 3), not surprising 

considering the difference in the electronegativities of dtanium and hydrogen. One may recall 

that TiH2 forms a lattice structure in the solid state25 with a titanium coordination number of 8. 
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so it may be reasonable to think of TiiHg as a precursor which, if given the opportunity, would 

react with other titanium and hydrogen atoms (or indeed other titanium hydride molecules) to 

form extended polymeric structures. 

(d) Calculated Frequencies. Vibrational frequencies were calculated at the 

MP2/1'ZVP level for all minima and transition states found. Those calculated for the C2h 

(Figure 2b) and Cs(2) (Figure 2d) isomers were chosen for comparison with experiment. 

In Margrave's matrix isolation experiment^ one may expect to observe co-existence of 

species which would not occur in an unhindered envirotmient. We therefore expect that the 

presence of Ti2H8 dimers should not preclude the presence of TiH4. 

The experimental frequency assigned to a Ti-H stretch in TiH4 is 1658 cm-'; the 

calculated Ti-H stretch frequency for TiHt is 1788 cm-L The calculated Ti-H stretch frequency 

may be scaled to the experimental one by a factor of 0.93. This scaling factor is applied to all 

calculated frequencies to account for basis set deficiencies and higher order correlation effects. 

Vibrational frequencies can be seen in Table 4. The scaled calculated frequencies can 

be compared to the experimental frequencies observed by Margrave.9 Although definite 

assignments are difficult, there are a number of features of the spectra which are highly 

consistent with the presence of hydrogen bridged compounds. Firstly, there is a broad intense 

feature centered on 1490 cm-i in the experimental spectrum. This coincides nearly exactly with 

the most intense calculated frequency (scaled) for the C2h isomer (1487 cm-D. Furthermore a 

broad intense feature between 1300-1500 cm-i is considered indicative of a bridge stretch in a 

double hydrogen bridged compound,26 and the normal mode of the calculated frequency is in 

fact a bridge stretch (Figiwe 9a). Secondly, there is a smaller peak in the spectrum centered at 

1140 cm-i and a corresponding calculated frequency (scaled) at 1081 cm-i.There is a 

discrepancy here of ~ 60 cm-i but Kaupp and Schleyer have noted that considerable differences 
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between calculations and matrix experiments for soft bending modes are expected due to 

interactions between guest and host molecules.27 Features in this region are known to be 

indicative of a bridge deformation in three bridging hydrogen species,-^ and the calculated 

frequency does correspond to a bridging hydrogen bend in the Cs(2) isomer (Figure 9b). 

The most intense calculated frequency for the Cs(2) isomer (at 1539 cm-i) may 

correspond to a feature seen at 1515 cm-i in the spectrum (Margrave labels this peak TixHi), 

and the presence of a triplet centered at 1658 cm-i may be explained by the slightly different 

envirorunents encountered by different terminal hydrogens in the bridging compounds. This is 

supported by the scaled calculated Ti-H stretch frequencies at 1640, 1660, and 1664 cm-i. 

Of course, even though the calculated frequencies are consistent with Margrave's 

spectrum, to establish the presence of dimers beyond doubt would require a matrix isolation 

experiment with aimealing and monitoring of corresponding changes in peak intensity such as 

those Andrews and coworkers have performed on magnesium and beryllium hydrides.28 This 

is necessary as although there is a large thermodynamic driving force and no barrier to 

dimerization low mobility in a matrix experiment may inhibit the process. 

IV. Summary and Conclusions 

TiHt is found to dimerize with no barrier and a large thermodynamic driving force (up 

to 46 kcal mol-i on the classical potential energy surface) producing both doubly hydrogen 

bridged and triply hydrogen bridged TixHg isomers. The potential energy surface of TiiHg is 

very flat suggesting continuous rapid inter-conversion between (|i-H)2 and (m.-H)3 isomers and 

also between rotational isomers. It is conceivable that interaction with host molecules in a 
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matrix isolation experiment could hinder this inter-conversion process. 

Inclusion of dynamic electron correlation in calculations is essential to produce both 

reliable geometries and energetics. The effect of dynamic electron correlation is especially large 

for the (M.-H)3 isomers. Nonetheless, a crucial result is that all bridging structures are found 

to be quite stable relative to the separated monomers, even at the Hartree-Fock level of theory. 

This is very likely due to the fact that unlike CH4 and SiH4, TiK; caimot be thought of as a 

saturated molecule. Thus, the impact of the s^2 electronic configuration of titanium versus the 

s2p2 electronic configuration of carbon and silicon has a spectacular effect on the stmcture and 

energetics of the titanium hydrides investigated in this smdy. The well known ability of 

titanium to accommodate more than four ligands is obviously essential to the formation of the 

Ti2H8 dimers. The electron deficiency of titanium in TiH4, that is its desire to fill its available d 

orbitals is likely the main driving force in the dimerization of TiH^. In this sense, titanium is a 

transition metal analog of the electron deficient main group element boron. A desire for higher 

titanium coordination numbers can also be seen in the energetic preference for triple bridged 

structures over double bridged structures. 

The bonding in the Ti2H8 isomers appears to be polar in character with electrostatic 

attraction between positively charged titanium centers and negatively charged hydrogens. This 

suggests that the polarized Ti^- bonds in TiHt have some role to play in the preference 

for the dimeric Ti2H8 species. 

Calculated infrared frequencies are consistent with the spectra produced by a matrix 

isolation experiment on titanium hydrides done by Margrave et al. However, fiirther 

experimental work is needed to establish without doubt the presence of dimers. 

Although different terminal substituents such as chlorine and cyclopentadienyl may 

have some affect on the system, the large thermodynamic driving force for dimerization with 

bridging hydrogens seen in this smdy must have some role to play in systems such as the 
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titanocene dimer and ("qS -C5H5)2TiBH4 which contain bridging hydrogens and one or more 

titanitmi centers. 
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Table 1. Calculated total energies in Hartrees of the titane molecule, and zero point vibrational energy 
correction at the MP2/TZVP level. 

Point 
Group 

TZVP TZVP(0 

RHF(opi) MP2(opO CCSD(T)" Z.P.E.(MP2) CCSD(T)" AH(C<SI)(Tii'' 

Td -850.59992 -850.73823 -850.77402 0.02212 -850.79274 -850,77062 

All single point energies calculated at the MP2/TZVP optimized geometry. I' AH(CCSD(T)) 
value is the single point CCSD(T)/TZVP(f) energy with zero point vibrational energy added. 



www.manaraa.com

Table 2. Calculated energies of TiiH^ relative to 2TiH4 in kcal mol-<, and zero point energy corrections 
at the MP2/TZVP level. 

TZVP TZVP(0 

RHF(opt) MP2(opt) CCSD(T)<' Z.P.E. 
(MP2) 

CCSDCT^' AH(CCSD(T))'' 

Minima 

C2v -23.0 -37.1 -36.8 3.0 -37.2 -34.2 

C2h -23.2 -37.4 -36.9 3.0 -37.4 -34.4 

Cs(l) -20.7 -45.5 -41.6 5.2 -43.8 -38.6 

Cs(2) -20.7 -46.9 -43.2 5.4 -46.1 -40.7 

Cs(3) 

Cs(4) 

-43.6 

-43.9 

-38.9 

-41.3 

5.2 

4.4 

-41.1 

-43.2 

-35.9 

-38.8 

Transition 
States 

T.S.(l) -37.1 -36.7 2.8 -37.2 -34.4 

T.S.(2) -35.5 -34.6 2.9 -35.5 -32.6 

T.S.(3) -45.5 -41.6 2.2 -43.9 -41,7 

T.S.(4) -43.6 -38.9 5.1 -41.2 -36.1 

T.S.(5) -43.9 -41.3 4.3 -43.2 -38.9 

« All single-point energies calculated at the MP2/TZVP optimizied geometry.AH(CCSD(T)) 
values are the single point CCSD(T)/TZVP(0 energies with zero-point vibrational energies added. 
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Table 3. MuUiken charges calculated using the MP2 density. Comparable basis sets were 
used; TZVP(f) for Ti2H8 and TZVP(d) for B2H6. 

TiiHg 

Cih Cs(l) 

B2H6 

Dih 

Ti(l) 0.498 Ti(l) 0.308 B(l) -0.150 

H(3) -0.143 Ti(2) 0.394 H(3) 0.105 

H(5) -O.lll H(3) -0.107 H(5) 0.022 
H(9) -0.131 H(4) -0.133 

H(5) -0.106 

H(6) -0.141 

H(7) 0.016 
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Table 4. Calculated harmonic vibrational frequencies for the Ti2H8 isomers C^h and Cs(2) a 

Symmetry Vibration 
T? Scaled 
Ft^Ky Frequency Intensity 

/ km mol-i 

Expd. 
Frequency^ 

/cm-' 

C2h 

Bu Htbend 382.5 355.7 128.9 

Bu Ht bend 489.0 454.8 138.2 

Au Ht bend 547.0 508.7 179.7 

Bu Ti-Hbr str 1599.0 1487.1 2706.2 1490 broad 

Bu Ti-Ht str 1785.4 1660.4 951.1 1658 

Au Ti-Htstr 1789.3 1664.0 547.1 1665 

Cs(2) 

A' Htbend 382.3 355.5 138.6 

A" Ht,br bend 481.4 447.7 138.0 

A* Htbend 495.8 461.1 157.7 

A' Ht bend 526.4 489.5 113.7 

A' Ht bend 571.4 531.4 297.6 

A' Hbr bend 1162.5 1081.1 193.4 1140 broad 

A' Hbr bend 1340.4 1246.6 100.2 

A' Ti-Hbr str 1655.0 1539.1 1405.3 1515 

A' Ti-Ht str 1738.5 1616.8 381.5 1620 

A" Ti-Ht str 1747.7 1625.4 257.9 

A' Ti-Ht.br str 1762.4 1639.0 130.0 

A" Ti-Ht str 1763.1 1639.7 442.8 1645 

A' Ti-Ht str 1771.0 1647.0 108.6 

a Scaling factor of 0.93 used. Only calculated frequencies with an intensity greater than 
100 km/mol reported. 
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© 
RHF/TZVP 1.70 A 

MP2/TZVP 1.70 A 

Td 

Figure 1. Titane equilbrium geometry. 
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Figure 2. MP2/TZVP optimized structures which are minima on the 
potential energy surface of Ti2Hg. In Cs(I), Cs(2) and Cs(3) the two Ti's, 
Ha and are in the plane. In Cs(4) The two Ti's, Hg, Hb, He and Hj are in 
the plane. 
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Figure 3. MP2/TZVP optimized structures which are transition states on the 
potential energy surface of Ti2H8. 
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Figure 4. Plots of MP2/TZVP single point energies in Hartrees versus Ti-Ti separation in A 
corresponding to a) the dissociation of Cs(l) (Figure 2c) into two TiH4 firagments and b) the 
dissociation of Cs(4) (Figure 2f) into two TiH4 firagments. The single point energies were 
calculated at the constrained RHF/TZVP optimized geometries (Ti-Ti distance constrained). 
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a) 

4,(K)A 3.90 A 3,«() A 3.70 A 3.50 A 

3.10 A 3.05 A 3,00 A 2.95 A 2.90 A 2.85 A 

b) 

-X -A 
4.00 A 3.90 A 3.80 A 3,70 A 3.50 A 

3.10 A 3.05 A 3.00 A 2.95 A 2.90 A 2.85 A 

Figure 5. Each structure is the result of a constrained optimization at the RHF/TZVP level in which the Ti-Ti separation was 
"frozen" at the distance indicated, a) represents a possible dimerization path to Cs( I) (Figure 2c), and b) represents a possible 
dimerization path to Cs(4) (Figure 20. 
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Figure 6. a) CCSD(T)/TZVP(0 potenlial energy surface for Ti2HR. b) CCSD(T)/TZVP(0 polenlial energy surface for Ti2H« with 
zero point vibrational energy (calcualed at the MP2/TZVP level) added. All energies in kcal mol ', diagrams not to scale. 
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b) 

Figure 7. a) Localised molecular orbital corresponding to a three center, two 
electron hydrogen bridging bond in the C2h isomer, b) Plot of total electron 
density for the €21, isomer. The contour increments in a) and b) are 0.05 
Bohr^'^ and Bohr^, respectively. 
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a) 

Figure 8. a) Localised molecular orbital corresponding to the in-plane three center, 
two electron hydrogen bridging bond in the Cj(l) isomer, b) i) Plot of total electron 
density in the plane of the C^{ I) isomer, ii) Plot of the total density in the plane of 
one of the remaining bridging hydrogens of the Cg( 1) isomer. 
Contour increments in a) and b) are 0.05 Bohr''^ and Bohr', respectively. 
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Bridge stretch at 1487 cm'' (scaled). 

b) 

Cs(2) 

Bridge deformation (bend) at 1081 cm*' (scaled). 

Figure 9. a) Normal mode of the calculated frequency (1487 cm'' (scaled)) that 
corresponds with a broad feature centered at 1490 cm'' in the experimental 
spectrum.b) Normal mode of calculated frequency at 1081 cm*' (scaled). This may 
correspond to the experimental peak found at 1140 cm''. 
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CHAPTER 4. THE MOLECULAR ELECTRONIC 

AND STABILITY OF THE ISOMERS OF 

STRUCTURE 

Ti2H6 

A paper accepted (subject to minor revisions) by the Journal of the American Chemical Society 

Simon P. Webb and Mark S. Gordon 

Abstract 

Ab Initio calculations have been performed on five singlet and five triplet isomers 

which are minima on the two lowest potential energy surfaces of TiiHg. We have used single 

determinant ROHF as well as multiconfigurational methods, employing triple ^ with 

polarization basis sets. Dynamic correlation effects are accounted for using second order 

perturbation methods. Staggered and eclipsed C3V triple hydrogen bridged structures, which 

have been studied previously using single determinant closed shell reference wavefunctions, 

are shown to require a more sophisticated treatment. The remaining isomers - Cs triple 

hydrogen bridged, D2h double hydrogen bridged, and D4h quadruple hydrogen bridged - have 

not previously been considered. The triplets are by definition diradical and the singlets are 

found to possess largely diradical character. The Dih isomer may be thought of as the simplest 

model for di-titanium(III) bridged compounds. It is found to be antiferromagnetic with a 

calculated isotropic exchange interaction of J = - 250 cm-i (singlet-triplet gap of 1.43 

kcal/mol). All isomers are predicted to be stable with respect to 2TiH3. The most stable isomer 

is the triplet Cs structure with an exothermic dimerization energy of 56.4 kcal/mol. 
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Titanium hydrides are an imponant class of compounds. Their catalytic behavior in 

many reactions, including polymerization of olefins and nitrogen fixation, i has ensured 

continuing interest and research both experimentally and theoretically. In addition to studies of 

specific systems catalyzed by titanium hyrides,2^.'*-5 over the last ten years much needed 

anention has been paid to the fundamental chemistry of simple titanium hydride systems. 

Recently Andrews et al carried out low temperature matrix isolation studies on the 

reaction between laser ablated titanium atoms and hydrogen.^ Previously to this Margrave, 

Xiao, and Hauge carried out similar experiments in which they smdied the reaction of titanium 

atoms, produced by the vaporization of a titanium filament, with hydrogen.^ These two 

studies between them produced the first reported spectra of the molecules TiH, TiH2, TiHs, 

and TiHt. 

Bauschlicher has carried out a series of ab initio calculations on TiH including 

benchmark full CI calculations.^ Ab initio calculations carried out on TiH2 have shown its 

ground state to be a triplet with bent geometry.9 Studies on H2—TiHi and TiH^'O have 

attempted to clarify peak assignments made in Margrave's experimental work.? Also, an ab 

initio smdy done in this laboratory n investigated the dimerization of TiHt and concluded that 

Tititdimers could have been observed in the matrix isolation studies.6.7 Most recently a smdy 

carried out on singlet closed shell TiiHe^- finds two C^y triple bridged structures: one with an 

eclipsed conformation; the other staggered. No Ti-Ti bonding interaction was found in these 

isomers despite short Ti-Ti separations. At their best level of theory Garcia and Ugalde found 

the structures to be thermodynamically stable with respect to ITiHs by - 20 kcal/mol. 

However, in this paper we will show that the single determinant reference wavefimction used 
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in their study provides an inadequate description of the TiiHe system. Consequently. ±e 

TiiHs potential energy surfaces need to be re-examined. 

In this work we have carried out an extensive study of the potential energy surfaces of 

the lowest singlet and triplet states of Ti2H6, in part to investigate the diradical character of this 

system. We have considered both singlet and triplet states of double, triple, and quadruple 

hydrogen bridged structures. This study also addresses the stability of Ti2H6 with respect to 

two separated TiHs monomers. Obviously this has some bearing on the experimental work of 

Andrews et al 6 who claim to have observed TiHs, as dimers could be present in their matrix 

isolation experiments. Calculation of the infrared frequencies of TiHs and Ti2H6 are reported 

for comparison with experiment. We also consider the thermodynamics of the reactions (RI) 

and (R2). 

TiiHe + 2H ^ TiaHs (Rl) 

Ti2H6 + H2 —> Ti2H8 (R2) 

The molecule H2Ti(|i-H)2TiH2 is an important prototype as it can serve as the simplest 

model for homodinuclear titanium(III) systems. There are numerous examples of such systems 

in the literature. The compound rac-{ [C2H4("n5-tetrahydroindenyl)2j-Ti(III)(n-H)]2'3 contains 

a Ti2H2 unit with the two hydrogens bridging to form a flat ring. It is the first strucmrally 

characterized titanocene(III) hydride derivative without a supporting organic bridge, and is 

found to be antiferromagnetic. The titanocene dimer [(Ti5-C5H5)Ti(^i-H)l2(H-T|5:T)5.CioH8) has 

also been shown to have two bridging hydrogens between its two titaniumCHI) centers, but, in 

contrast to the compound just discussed, the Ti2H2 unit forms a buckled ring with folding 
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along the H—H axis and there is a carbon-carbon linkage between titanocene units, It is 

found to be diamagnetic at ambient temperature which suggests either a Ti-Ti bond and/or a 

substantial singlet-triplet energy gap as the Ti(lII) d electrons must be paired or singlet coupled: 

however, due to lack of detailed magnetic susceptibility measurements as a fimction of 

temperature, this has not been established definitively and is the subject of ongoing calculations 

in this laboratory. The hydroxy derivative of the titanocene dimer^s was found to be weakly 

paramagnetic, suggesting diradical character, although the authors were hesitant to rule out Ti-

Ti bonding. Other smdies include those on [Cp2Ti(n-X)]2 where XssF,C13r, and 

They find unpaired electrons exhibiting antiferromagnetic behavior with strengths in the order 

Br > CI -1 > F, suggesting dependence on more than just Ti-Ti distance. Two more recent 

experimental smdies 18.19 also demonstrate the sensitivity of the magnetic properties associated 

with these homodinuclear titanium(III) compounds to the bridging species, Samuel et al find 

that the compounds [Cp2Ti(p.-(X!H3)]2 and [Cp2Ti((i-OC2H5]2 are paramagnetic dimers 

exhibiting weak antiferromagnetic behavior suggesting singlet coupling of unpaired electrons. 

However, Dick et al find the compounds [Cp2Ti(p.-PMe2)]2 and [Cp2Ti(^i-PEt2)]2 to be 

diamagnetic and strongly antiferromagnetic. They suggest either through-ligand coupling of the 

unpaired Ti electrons or a "super-long" a type Ti-Ti bond of the type proposed to be present in 

certain homodinuclear zirconium systems by Rohmer and Benard.20 The latter appears 

unlikely considering the Ti-Ti separation of -3.7 A. Another example is the complex [Cp2Ti(n-

0)]2 which is paramagnetic and weakly ferromagnetic.21 This is the only ferromagnetic 

homodinuclear Ti(III) compound known. 

It is clear then that the bonding and magnetic properties of these molecules arise fi-om 

complex interactions between the two metal centers, and between the metal centers and 

bridging (and possibly terminal) ligands. With the current and constantly increasing scope of 

ab initio calculations it seems reasonable to expect helpful and reliable contributions from "first 
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principles" theory in this area in the near future. However, establishing adequate levels of 

theory to describe simple dinuciear titanium(III) systems is vital before approaching the 

complex systems just described. This is best done by first considering the prototypical H2Ti()i-

H)2TiH2 system. It is relatively straightforward (relative to experiment) to establish the nature 

of Ti-Ti interactions using theoretical techniques such as the calculation of natural orbital 

occupations of MCSCF wavefunctions. In subsequent studies one could then monitor directly 

the effect of, for example, terminal cyclopentadienyl ligands, and various bridging ligands on 

the Ti-Ti interaction in homodinuclear titanium(III) systems by comparison to the "baseline" 

H2Ti(p.-H)2TiH2 analysis. 

The ability to predict magnetic properties of dinuciear complexes is an important goal in 

the area of molecular materials.22 The use of ab initio calculations in this area has until recently 

been rather limited. Accurate determination of multiplet splitting energies requires the inclusion 

of non-dynamic and dynamic correlation effects.23.24 The relative simplicity of H2Ti(n-

H)2TiH2 enables us to make a reliable determination of its singlet-triplet splitting energy. 

II. Computational Details 

(a) Basis Set. For titanium we employed a triple ^ with polarization 

(14s I Ip6d/10s8p3d) basis set. This consists of Wachter's basis set25 with two additional sets 

of p functions26 and a set of diffuse d fimctions.27 For hydrogen Dunning's (5slp/3slp) basis 

set28 was used. Collectively this basis set is referred to as TZVP and was used in all geometry 

optimizations. F functions were added to the titanium basis with an exponent of 0.4i i for 

single point energies; this basis set is referred to as TZVP(f). For a final test of basis set 
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convergence selected single point energies were carried out with the titanium TZVP basis plus 

one set of f (a = 0.591), and g (a = 0.390) functions, and a set of diffuse s (a = 0.035), p (a 

= 0.239), and d (a = 0.0207) fiinctions. Exponents used here are optimized for correlated 

titanium atoms and are due to Glezakou and Gordon.^ 

(b) Wavefunctions. We now discuss the wavefunctions needed to adequately 

describe a reference state for the TiiHe isomers we consider in this paper (see Figure 1). 

Garcia and Ugalde carried out the only previous calculations on Ti2H6.'2 They reported only 

singlet Csv triple bridged structures and used closed shell single determinant reference 

wavefunctions. However, careful consideration of the orbitals and electrons reveals the 

inadequacy of such a single configuration description. These Csv isomers require consideration 

of three orbitals (ai, ex, and ey) for occupation of the two highest energy electrons, due to the 

near degeneracy of the orbitals. Several electronic states correspond to the distribution of two 

electrons in this orbital space: two iAi states, four lE states, one 3A2 state, and two 3E states 

(see Figures 2a and 2b). These group theoretical considerations suggest the need for a multi-

configurational (MC) SCF description of those states. 

Preliminary Fully Optimized Reaction Space (FORS)-MCSCF30 (also called 

CASSCF31) calculations illustrate considerable mixing between the (ai)2(ex)0(ey)0, and 

((ai)0(ex)2(ey)0+ (ai)0(ex)0(ey)2) configurations in the lAi ground state: a natural orbital 

analysis of the eclipsed isomer wavefunction shows 1.51 electrons in the ai orbital, and 0.24 

electrons in each of the degenerate e orbitals. This qualitatively correct description of the i Aj 

ground state (taking the eclipsed isomer as an example) is 13.6 kcal more stable than the i Ai 

state described with the RHF closed shell wavefunction (ai)2(ex)0(ey)0. Therefore, the 2 
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electron, 3 orbital MCSCF wavefimction is the simplest qualitatively correct wavefimction for 

the 1 Ai states. It is the reference wavefiintion used in subsequent perturbation calculations 

which correct for dynamic electron correlation in the i Ai states. In order to test for Jahn-Teller 

effects the geometry of this eclipsed isomer was distorted slightly from Csv to Cj symmetry. 

Orbital symmetry constraints requiring degenerate e levels were therefore removed and a 2 

electron, 3 orbital MCSCF geometry optimization was carried out on this i A' state with a', a', 

and a" orbitals active. The resulting optimized geometry returned to essentially Csv symmetry 

and the energy of this structure was lower by only 0.5 kcal/mol, suggesting negligible Jahn-

Teller distortion. 

It is formally possible for all four of the lE configurations to mix; however, a 

preliminary FORS-MCSCF calculation suggests that a subset of the lE configurations are 

dominant in each excited lE state. The first two degenerate excited lE states are dominated by 

the configurations (ai)i(ex)Key)Oand (ai)i(ex)°(ey)' (all other CI coefficients are less than 

0.025). Therefore, a "state-averaged" restricted open shell Hartree-Fock (ROHF) wavefimction 

was constructed by assigning equal weights to these two dominant configurations. This single 

configuration ROHF wavefimction is then used to predict the staggered and eclipsed 

geometries. It also serves as the reference for perturbation corrections on the averaged lE 

excited state. Note that if the two lE configurations are not averaged the result is occupation of 

only one of a pair of degenerate e orbitals, and this may lead to Jahn-Teller distortions to Cs 

structures. The question of Jahn-Teller distortion is again addressed by relaxing symmetry 

constraints to Cs, thereby splitting the degenerate e orbitals into a' and a". The "state-averaged" 

'E excited state is therefore split into a i A' state (two singly occupied a' orbitals) and a • A" 

state (a singly occupied a' and a singly occupied a"). The i A* state is acmally a configuration 

included in the 2 electron, 3 orbital calculation described in the previous paragraph, and is not 
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considered ftirther. A singlet ROHF geometry optimization performed on the 'A" state 

indicated no appreciable geometry change and the resulting structure is almost isoenergetic with 

the Csv state, with a decrease in energy of only 0.3 kcal/mol. As in the ground state. Jahn-

Teller distortion is therefore considered to be unimportant. 

The C3v IE state is considerably less stable than the C3V i Ai state. This is also the case 

when dynamic electron correlation is accounted for. Since our primary interest is in the nature 

of the ground state singlet potential energy surface, this higher state is not considered further. 

The same is true for the third and fourth ^E excited states, whose dominant configurations are 

shown in Figure 2a-

The two degenerate 3E components ((a)Ke)c)Key)0 and (a)i(ex)°(ey)0 are described by 

a state-averaged wavefimction. This state-averaged 3E state is lower in energy than the 

state (see Figure 2b). To assess the possibility of Jahn-Teller distortion of the 3E state, 

symmetry constraints were relaxed to Cj. Two ROHF/TZVP geometry optimizations were 

carried out on the eclipsed stmcture, one with two a' orbitals singly occupied (3 A'); one with 

a" and a' each singly occupied (3 A"). Negligible geometry and energy changes (energy 

decrease of 0.4 kcal/mol for both 3A' and 3A") occurred, indicating no Jahn-Teller distortion. 

The 3E and 3 A2 states can both be described qualitatively correctly with a single determinant 

ROHF wavefimction. With inclusion of dynamic electron correlation, the 3E state is 

considerably lower in energy than the 3A2 state. Since 3E is the lowest energy triplet, the 3A2 

state is not considered fiirther. 

Test calculations on the lowest energy singlet states for other Ti2H6 isomers (D2h, Cg, 

and D4h) show that a correct reference wavefimction requires the inclusion of only two orbitals 

and the two highest energy electrons in the active space. This is discussed in the next 

subsection. 
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(c) Methods. For Ti2H6 triplets and the TiHj doublet, geometry optimizations were 

performed at the ROHF level of theory. For singlets, preliminary calculations were carried out 

at the RHF level. After convergence of the RHF wavefunction, modified virmal orbitals 

(MVO's) were generated by freezing the occupied orbitals, forming a cation by removal of six 

electrons and performing one SCF iteration. The resulting orbitals were used as a starting point 

for two configuration (TCSCF) geometry optimizations, and 2 electrons in 3 orbitals. FORS-

MCSCF geometry optimizations where necessary (e.g. Cjv lAi). The lA" state of the Cj 

structure was found to be more stable than the i A' state, so geometries reported for this singlet 

were obtained from an ROHF calculation. TCSCF wavefunctions frequently over- estimate 

diradical character. To ensure that the high diradical character found in the Ti^Hg isomers in 

this smdy is not an artifact of the small active spaces, a FORS-MCSCF/TZVP geometry 

optimization with 12 electrons in 13 orbitals on the D2h isomer was carried out, using MVO's 

from an RHF calculation as starting orbitals. This active space is at the limit of our capabilities 

and includes all but two of the valence electrons in Ti2H6. The seven virmal orbitals included in 

the active space correspond to d-orbital interactions of various orientations. The natural orbital 

analysis of the resulting wavefunction is virtually identical to that of the TCSCF wavefunction. 

The occupation numbers of the Ti-Ti cr and c* natural orbitals in the (12,13) wavefunction are 

1.15 and 0.85 electrons, respectively, compared with 1.11 and 0.89 for the TCSCF 

calculation. All other occupation numbers are ~ 2.0 or 0.0 in the (12,13) calculation. FORS-

MCSCF/TZVP calculations with a (2,10) active space which includes all possible d-orbital 

orientations also confirm the same diradical character and adequacy of the TCSCF 

wavfunction. 

Stationary points were characterized by calculating and diagonalizing the energy 

second derivative matrix (hessian). A positive definite hessian (no negative eigenvalues) 
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indicates a minimum on the potential energy surface. 

Dynamic electron correlation effects were included by carrying out RMP232 single 

point energy calculations at ROHF geometries for Q, D2h> ^d D4h triplets, and 

multiconfigurational quasidegenerate second order perturbation theory calculations 

(MCQDPT)33 at the ROHF geometries for the C^v and Cs i A" stares, TCSCF geometries 

for D2h and D4h singlets, and the 2 electron, 3 orbital FORS-MCSCF geometry for the C3v 

lAi state (note: any future reference to MCSCF will imply FORS-MCSCF). For energetics 

these single point energy calculations were repeated with the TZVP(f) basis set. For energies 

relative to 2TiH3 consistent methodology was used, i.e. the dimerization energy was calculated 

with both energies from RMP2 or both energies from MCQDPT. Additional single point 

energy calculations on the Cj, D2h, and D4h singlets and triplets were carried out using the 

largest basis set TZVP(f,g) as a test of basis set convergence. 

Ail calculations were done using the electronic strucmre code GAMESS.3^ 

in. Results and discussion 

Tiffj. A D3h structure (2A'i state) was found to be the lowest energy minimum on the 

TiHs potential energy surface and is shown in Figure 3. Total energies are shown in Table 1. 

Ti2ff6. Multiple minima were found on both the triplet and singlet potential energy 

surfaces of TiaHg. Geometries are shown in Figure L Energies relative to 2A'i 2TiH3 are 

shown in Table 2. Molecular orbital plots along with occupation numbers are shown in Figure 

4a and Figure 4b. 
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(a) Molecular and Electronic Structure, and Energetics. All the structures 

found in this study of Ti2H6 (see Figure I) involve bridging hydrogens between the two 

titamum(III) centers. The presence of bridging hydrogens is not particularly surprising and 

may be attributed to the election deficiency of the two titaniums and their desire for high 

coordination numbers, n The double hydrogen bridged (^i-H)2 minima (singlet and triplet) 

closely resemble the structure of diborane. These D2h structures may be thought of as simple 

prototypes in which the two titaniums and the bridging ligands are arranged in a fashion similar 

to that in more complex homodinuclear titanium(III) compounds such as titanocene dimer.i^ 

From this perspective, the bonding and energetic characteristics of the D^ti structure, such as 

diradical character and singlet-triplet splitting (see sections in c and d), may be thought of as a 

reference with which to compare these mote complex systems. It does not appear that any triple 

((1-H)3 or quadruple (^-H)4 hydrogen bridged di-titanium(III) compounds are experimentally 

known. Homodinuclear transition metal compounds containing Fe and Re with three and four 

bridging hydrogens, respectively, are known experimentally. Examples are Fe2(|i-H)3(P3)]+ 35 

and Re2(M^-H)4 H4(PEt2Ph)4.36 So, the remaining (m.-H)3 and ([i-H)4 isomers are not yet 

useful as prototypes, but are highly relevant to the low temperature matrix isolation studies of 

Margrave^ and Andrews^ (see section EH b). 

The D2h, Cs, and D4h ground state minima either exhibit a high degree of diradical 

character (D2h and D4h singlets) or are by definition diradicals (triplets and Cs i A"). A natural 

orbital analysis of the singlet TCSCF/TZVP wavefunctions (see Figure 4a) shows occupancies 

of 1.11 and 0.89 electrons for the o and o* orbitals, respectively, in the D2h singlet minimum, 

and 1.09 and 0.91 electrons for it and it*, respectively, in the D4h singlet minimnm These 

occupation numbers indicate high diradical character with a very small bonding interaction in 
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these two singlets. Another indication of the D2h and D4h singlet diradical character is the near 

degeneracy of the TCSCF singlet and the ROHF triplet energies for these structures (Table 2). 

Of course, if one assumes identical geometries, a pure diradical singlet when excluding 

dynamic electron correlation will necessarily be less stable than a triplet, due to the intrinsic 

correlation of the same spin electrons in the triplet. This is in fact the case for the Cs isomer, for 

which the singlet is purely diradical: the triplet is more stable by 0.5 kcal/mol. The Dih and D4h 

singlets are 0.5 and 0.6 kcal/mol more stable than their triplet counterparts, respectively. This 

reinforces what was suggested by the natural orbital analysis (see Figure 4a): there is a very 

weak bonding interaction in these two singlets. At our best level of theory for these isomers, 

which includes f and g fimctions on Ti and dynamic electron correlation through second order 

perturbation theory (MCQDPT/TZVP(f,g)), we can draw similar conclusions: the Cj singlet 

and triplet isomers are essentially degenerate with the triplet only 0.3 kcal/mol more stable than 

the singlet, whereas the D2h and D4h singlets are more stable than their triplet counterparts by 

1.3 and 1.4 kcal/mol, respectively, again suggesting weak bonding interactions. The singlet-

triplet energy gap for the D2h isomer will be discussed in more detail in section HI d) where we 

consider magnetic properties. 

The diradical nature of these isomers cannot be attributed to large Ti-Ti separations. 

One can clearly see from Figure 1 that the Ti-Ti separations (3.04 A, 2.81 A, and 2.50 A for the 

D2h> and D4h singlets respectively) are close to or well within a separation one might 

normally associate with a titanium bond based on the titaniimi atomic radius of 1.47 A.37 For 

the Cs, D4h, and Cjv isomers, inspection of the orbitals is sufficient to suggest why there is no 

Ti-Ti bond formation. Figure 4a shows the relevant d orbitals of the Cj structure. Their 

orientation presumably reflects a minimization of unfavorable interactions with bridging and 

terminal hydrogens. The result is d orbital orientations in which no overlap or interaction can 

be expected and so single occupation of two orthogonal orbitals (one on each titanium) is 
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energetically favored. For the D4h structure Figure 4a shows the d orbitals to be in a JC 

arrangement. It appears here that even the short Ti-Ti separation of 2 JO k is too long for 

effective it orbital overlap. The Csv structures show a coordination number of six on one Ti 

and only three on the other, making one titanium less saturated than the other. The two 

electrons prefer to associate with the less saturated Ti in a non-bonding lone pair arrangement 

(Figure 4b). 

For the D2h singlet, mere inspection of the orbitals (Hgure 4a) does not make it clear at 

all why there is no Ti-Ti bond to speak of. Here the orbitals are in an ideal arrangement for the 

formation of a o bond yet there is only weak bonding interaction. An explanation of the lack of 

a strong bonding interaction between the two titaniums in the D2h structure will be suggested in 

section III c). 

The Ti-H bond length behavior (see Figure 1) is similar to that seen in the related TioHg 

isomers. 11 The terminal Ti-H bond lengths are between 1.7 A and 1.8 A, within the range of 

Ti-H bond lengths found in TilU (1.70 A) and TiHs (1.77 k) at equivalent levels of theory 

(same basis set, no dynamic correlation). Bridging Ti-H bonds are, as expected, longer than 

terminal Ti-H bonds by up to - 0.2 A. 

At the MCSCF/ROHF levels of theory (see Table 2), the (Ji-H)2 D^h isomers are the 

most stable by a small margin over the (H-H)3 Cs isomers (1.9 kcal/mol in the singlet and 0.9 

kcal/mol in the triplet). The (|l-H)4 D4h isomers are considerably less stable (by ~ 20 kcal/mol). 

However, all these structures are stable with respect to 2TiH3 at this level of theory. The Csv 

isomers exhibit somewhat different behavior. The triplets are mote stable than the singlets by ~ 

25 kcal/mol and are themselves more stable than 2TiH3 by only ~ 12 kcal/mol. The singlets are 

unstable with respect to 2TiH3 by ~ 13 kcal/mol. 

Dynamic electron correlation is included through single point energies using second 
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order perturbation theory. At this level of theory, the C, structures (singlet and triplet) 

are clearly the most stable (Table 2). So, as has been shown previouslyii, dynamic electron 

correlation preferentially favors isomers with more than two bridging hydrogens. The Doj, 

isomers with the TZVP basis set are stabilized by 23.0 and 22.2 kcal/mol for the singlet and 

triplet, respectively, and the Cjv isomers are stabilized by 40.4 and 33.1 kcal/mol for the 

singlet and triplet eclipsed structure. Dynamic electron correlation narrows the spread of isomer 

stabilities considerably. Another effect of electron correlation is the stabilization of the eclipsed 

Csv isomers with respect to the staggered isomers by between 4 and 5 kcal/mol. This was also 

noted by Garcia and Ugalde.i^ With the inclusion of dynamic electron correlation all ground 

state isomers (including singlets) are stable with respect to 2TiH3. At the best level of 

theory the TiHs dimer is thermodynamically favored over the monomer by up to 56.4 kcal/mol 

(Cs 3 A" isomer). Previous work suggests no kinetic barrier to the dimerization of simple 

titanium hydrides;! i therefore, one might expect rapid dimerization whenever two TiHs 

molecules approach each o±er. 

Inclusion of Ti f functions appears to be necessary for a reliable description of the 

whole range of Ti2H6 isomers. Their presence has a noticeable effect on the D4h and C3V 

structures, stabilizing them (relative to 2TiH3) by 5.3,5.1 (D4h singlet and triplet, 

respectively), 4.0, and 3.0 kcal/mol (C3V singlet and triplet, respectively) at the correlated 

level. Increasing the basis set further to TZVP(f,g) makes little difference (0.3 - 1.0 kcal/mol) 

to the predicted dimerization energies, so the T2^VP(f) basis provides a good description of the 

entire range of isomers. 

(b) Calculated I.R. Frequencies.Vibrational frequencies were calculated at the 

MCSCF/ROHF TZVP level for all minima. The Cs ^A". Doh ^ Ag, D4h ' Ag. and staggered C3V 



www.manaraa.com

85 

3E minima were chosen for comparison with experimental spectra. 

The matrix isolation experiments of Margrave et al and Andrews et al ^ produced the 

first spectra of simple titanium hydrides. The spectra are very complex: imperfect isolation 

presumably results in the co-existence of many different titanium hydride species. It has 

already been shown that the existence of Ti2H8 in these experiments is possible.! i We now 

examine the likelihood of the presence of TiiHg, having shown this species to be very stable 

with respect to 2TiH3. The assigned experimental Ti-H stretch fi:equency for TiHs is 1580.6 

cm-i; the calculated ROHF/TZVP stretch frequency is 1668.0 cm-i. The calculated stretch 

frequency, then, may be scaled to the experimental one by a factor of 0.948. All frequencies 

discussed here are therefore scaled by this factor. Calculated LR. frequencies, their 

corresponding intensities, and experimental frequencies are shown in Table 3. 

The spectrum produced by Andrews el al has better resolution than that produced by the 

Margrave group; therefore, comparisons are made mainly with Andrews' data. Broad 

absorptions corresponding to bridge stretches and bends are characteristic of hydrogen bridged 

titanium compounds. Two such broad features can be seen in the experimental spectra.® The 

first lies between ~1440 cm-i and -1560 cm-i and is fairly well resolved; the second lies 

between -1150 cm-i and ~1340 cm-i with only partial resolution. The most intense calculated 

frequency for the Cs i A" species is 1475.9 cm-i; this is a bridge stretch and is close to the 

resolved experimental peak at 1485.2 cm-i. Andrews assigns this peak to the species TixHy. A 

number of the calculated frequencies lie within the broad 1150-1340 cm-i experimental feature 

(note that Andrews assigns this broad feature which is centered on 1250 cm-i to Ti^Hy - see 

spectra for details®). The most intense of these calculated fi:equencies is for the D4h ^ Ag species 

and appears at 1188.9 cm-'; this corresponds to an experimental peak seen at 1200 cm-i; a 

second calculated frequency for D4h ^Ag with a large intensity occurs at 1223.1 cm-' (2 
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modes), this corresponds to an experimental peak at 1225 cm-i. Both of these calculated 

frequencies are bridge stretching modes. The calculated bridge stretching frequency for D2h 

1 Ag at 1338.9 cm-i may correspond to a shoulder seen at 1330 cm-i. 

Additional results presented in Table 3 illustrate good agreement between calculated 

terminal hydrogen stretching frequencies and the experimental frequencies. However, the 

smaller calculated frequencies do not correspond to experimentally reported modes. In 

particular, those at 1141.3 cm-i (Cj lA"), 1069.4 cm-1 (D211 ^Ag), and 1079.6 cm-l (Cjv ^E) 

have significant predicted intensities. It has been suggested that discrepancies between 

calculations and matrix experiments at the low frequency end of the spectra are common due to 

interaction between guest and host molecules.38 In fact, if one considers the broad feature 

centered at 1250 cm-i in Andrews' argon matrix spectrum® and then looks for the 

corresponding feature in Margrave's krypton matrix spectrum^ one can see that it has shifted 

-110 cm-i to 1140 cm-i. This large shift, which must arise from the different interactions 

between guest and host in argon versus krypton, is almost zero for higher frequencies. 

We conclude that although definite assignment of experimental peaks based on these 

calculations is difficult and some of the good agreement may be fortuitous, the results suggest 

that Ti2H6 could be present. One can make the same conclusion by comparison to Margrave's 

spectrum. The fact that Margrave's experiment does not produce TiHs, f makes it appropriate 

to consider alternative pathways to the formation of Ti2H6. Possibilities include: TiHi + 

TiH4—> TiiHg , and Ti2H4+ H2 TiiHg. Andrews et al showed that there is H-atom 

participation in their experiment. Since Margrave's experiment did not involve H-atoms, it is 

relevant to compare the thermodynamics of the following reactions: Ti2H6 + 2H Ti2H8 and 

Ti2H6 + H2 Ti2H8 to assess the likelihood of conversion of Ti2H6 to Ti2H8 on annealing, 

in the two experiments. Calculated energies of formation can be seen in Table 4 for 
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representative isomers of TiiHe and TiiHg. At the best level of theory (MP2 and 

MCQDPTAZVP(f)), the reactions with H-atoms are highly favorable (-81.9 kcal/mol and -

85.1 kcal/mol); however, the reactions with H2 are thermodynamically unfavorable (+18.6 

kcal/mol and + 15.5 kcal/mol). This would suggest that on aimealing in Andrews' experiment, 

conversion of Ti2H6 to Ti2H8 would be probable. Such a conversion would be much less 

likely in the Margrave experiment 

(c) Bonding in Ti2H«. We now examine the bonding characteristics of Ti2H6 in 

more detail, paying particular attention to the prototypical D2h H2Ti(n-H)2TiH2 structure. 

Localized Orbitals. The energy localization method of Edmiston and Ruedenberg39 was 

used to localize the orbitals for all isomers. The localized orbitals (LMOs) clearly show the 

presence of titanium-terminal hydrogen G bonds, and Ti-H-Ti three center, two electron 

bonds. Representative plots may be seen in Figure 5a. The LMOs also clearly show two non-

bonded electrons in each isomer (see Figure 5b for representative plots). The D2h and D4h 

isomers are clearly diradical in nature, with one electron localized onto on each titanium center 

for singlets as well as triplets. For the singlet and triplet Cjv isomers the non-bonded electrons 

are found on the three coordinated titanium center, and the three LMOs which represent these 

electrons are symmetrically equivalent. As the unpaired electrons in the Cs isomers are already 

localized on each Ti center in the canonical orbital plots (see Figure 4a), one on each titanium 

center, the LMO plots are not shown. 

No strong Ti-Ti bond exists in any of the Ti2H5 singlet isomers, even though the Ti-

Ti separation is small and two electrons are available. Now, consider the absence of a Ti-Ti 

bond in the D2h singlet structure, in which the two electrons occupy the bonding o and 

antibonding a * orbitals almost equally with natural orbital occupation numbers of 1.11 and 
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0.89 electrons, respectively. Recall that the triplet is less stable than the singlet by only ~ I 

kcal/mol. Intuitively, this reluctance to foim a crbond is somewhat surprising, so the localized 

charge distribution (LCD) analysis')^ is used in the following paragraphs in an attempt to 

provide an interpretation. 

LCD Energy Analysis. It is possible to force the formation of a Ti-Ti sigma bond by 

requiring all orbitals in the singlet to contain two electrons; i.e. an RHF singlet with a doubly 

occupied Ti-Ti G bond orbital as the HOMO. At the diradical ROHF geometry, this RHF 

bonded species is destabilized wi± respect to the diradical by ~125 kcal/mol. If the RHF 

geometry is allowed to relax, the Ti-Ti bond shortens by - 0.5 A and the destabilization energy 

is reduced to - 98 kcal/mol. Since this is still very large, the energy decomposition, and the 

density difference plots which require the two species to have identical geometries, are 

analyzed at the diradical geometry. 

The LCD analysis decomposes the total energy into potential and kinetic energies of 

LMOs and the interactions between them. Using this analysis for both the bonded and diradical 

system, it is possible to track the origin of the destabilization of the bonded system. As the 

LCD analysis is only implemented for single determinant waveftinctions we compare the RHF 

singlet (bonded species) with the ROHF triplet (purely diradical) at the ROHF triplet geometry 

(see Figure 1). 

In the LCD procedure one assigns a local nuclear charge disoibution to each LMO. This 

was done according to the recommendations of Jensen and Gordon'*®: for Ti inner shell LMOs 

(core electrons) Ti was assigned a nuclear charge of 2, for the terminal Ti-H bond LMOs Ti 

and H were each assigned a nuclear charge of 1, and for the Ti-H-Ti bridging LMOs H was 

assigned a nuclear charge of 1 and each Ti was assigned a nuclear charge of 0.5. 

An overview of the LCD decomposition strategy is shown in Figure 6. The total energy 

difference (in Hartrees) between the bonded species and the non-bonded diradical species is 
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given by AE = E(bonded system) - E(non-bonded system). From Figure 6 the total energy 

difference AE(total) is + 0.1952 h, indicating overall destabilization of the molecule on 

formation of a Ti-Ti bond. This may be decomposed into changes in potential energy (APE = + 

0.7237 h) and kinetic energy (AKE = - 0.5286 h). So, overall, bond formation produces a 

favorable lowering of the KE, but this is more than offset by an increase in PE. A more 

detailed decomposition leads to the five contributions to AE outlined at the bottom of Figure 6: 

APE(bond), AKE(bond), APE(intemal), AKE(rest), and APE(interaction). Figure 7 groups 

these terms according to their physical significance: (a) bond formation; (b) rearrangement of 

core; terminal Ti-H, and Ti-H-Ti bridge electrons; and (c) interaction of the unpaired 

electrons/bond electrons with the rest of the molecule. 

First consider PE and KE differences between the bond electrons in the Ti-Ti bonded 

system and the unpaired electrons in the non-bonded system; i.e. the energy difference directly 

due to bond formation from the two unpaired electrons. The PE term arises from internal 

energy, except for the very small (- 0.0006 h) unpaired electron-unpaired electron interaction 

energy. The values for APE(bond) and AKE(bond), are + 0.4138 h and - 1.7184 h, 

respectively, resulting in a net stabilizing effect of - 1.3046 h. The density difference plot in 

Figure 8a, the RHF bond density minus the density of the unpaired electrons in the non-

bonded triplet, clearly shows a build up of electron density between the Ti centers. The 

depletion of electron density from the atomic centers into the bond region decreases the 

attractive electron-nuclear interaction (increases PE) and decreases the KE by decreasing the 

curvature of the electron density. A schematic representation of this is given in Figure 7. So, 

the changes in the bond region itself favor bond formation due to KE lowering. This is entirely 

consistent with the Ruedenberg interpretation of covalent bonding'* i and with the origin of 

hydrogen bond formation suggested by Jensen and Gordon.^a.b 

Next, consider the PE and KE changes which occur because of electron rearrangement 

in the rest of the molecule (the core, the terminal Ti-H bonds, and the two Ti-H-Ti bridges) 



www.manaraa.com

90 

upon bond formation. The term AE(intemal) includes self interactions and interactions amongst 

the core, the terminal Ti-H bonds, and the bridges. ^E(intemai) and AKE(rest) are - 0.622 Ih 

and + 1.1898 h, respectively, resulting in a net destabilization of+0.5677 h. The origin of 

APE(intemal) and AKE(rest) may found from density difference plots. Figures 8b and 8c 

illustrate a build up of electron density around the titanium atoms in the core and Ti-H bonds, 

respectively. This contraction of the orbitals around the Ti atoms explains the large increase in 

KE for the core and the Ti-H bonds (+ 0.5549 h and + 0.5474 h, respectively). Figure 8d 

shows depletion of electron density from directly around the hydrogen in the bridge bond and a 

corresponding build up closer to the Ti atoms. The KE decrease due to this orbital expansion 

around the hydrogen and the KE increase due to the corresponding contraction around the 

titaniums nearly cancel, resulting in the relatively small change in KE of the bridge of+0.0875 

h. We do not decompose APE(intemal) for the sake of simplicity; but, it is clear that orbital 

contractions which are responsible for the increase in KE also produce a corresponding 

decrease in FE though the KE term dominates. Again, a schematic representation of this can be 

seen in Figure 7. 

Next, consider differences in PE interactions of the bond and the unpaired electrons 

with the core, Ti-H bond, and the bridges. The LCD analysis shows APE(inieraction) to be + 

0.9321 h, a large destabilizing effect with all the above interactions making a significant 

positive contribution. These unfavorable interactions produced by electron-electron repulsion 

are, in fact, large enough to out weigh the stabilizing effect of the first four terms (APE(bond) 

+ AKE(bond) + APE(intemal) + APE(rest) = - 0.7369 h) and produce a net destabilization 

AE(total) = + 0.1952 h on bond formation. 

In summary, to form a Ti-Ti a bond in H2Ti(ji-H)2TiH2 requires the depletion of 

electronic density from around the Ti's and a build up of charge between them. The potential 

energy of these two electrons is increased and their kinetic energy is lowered, the kinetic 

energy term dominating. The remaining electrons contract around the titaniums driving up the 
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kinetic energy and lowering the potential energy, the kinetic energy term dominating. The net 

effect of these interactions favor bond formation (APE(bond) + AKE(bond) + APE(intemal) + 

APE(rest) = - 0.7369 h); however, the increase in potential energy produced by the unfavorable 

interaction of the bond with the rest of the molecule (APE(interaction) — + 0.9321 h) is large 

enough to ultimately ensure net destabilization upon bond formation (by + 0.1952 h). One 

simple interpretation here is that there is no a bond in H2Ti(n-H)2TiH2 due to steric repulsions 

between the bond and the rest of the molecule. 

Mulliken populations. MCSCF and ROHF Mulliken populations with the TZVP basis 

set show positively charged Ti's and negatively charged H's for all isomers (both singlet and 

triplet). Charges range from - + 0.6 to ~ + 0.8 on the Ti's, and ~ - 0.1 to - - 0.3 on the 

hydrogens. These charges indicate considerable bond polarization in Ti2H6. 

(d) Magnetic Properties of D2h H2Ti(^-H)2TiH2. Magnetic properties of 

molecular systems comprising dinuclear complexes which have a single unpaired electron on 

each metal center depend strongly on the intramolecular interaction of the metal centers with 

each other. This interaction itself can be affected by perturbations due to bridging and terminal 

Ugands. If the singlet state is lowest in energy the interaction is antiferromagnetic; if the triplet 

state is lowest in energy the interaction is ferromagnetic.— Here we focus on the D2h Ti2H6 

structures, since they are the most closely related to experimentally known compounds. 

The isotropic interaction between metal centers in these dinuclear complexes is 

reflected by the calculated singlet-triplet energy gap, where effects of spin-orbit coupling and 

magnetic dipole-dipole interactions are neglected. The isotropic effect has been found to be 

highly dominant in determining the magnetic interactions in di-titanium molecules studied 

experimentally,i7.i8 and is the only effect considered here. Results of a study on the much 

smaller spin-orbit coupling effects" will be presented elsewhere.'̂  ̂ To be consistent with 
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most of the experimental work referenced, we define the isotropic interaction parameter J by 

-2J = E(triplet) - E(singlet). Inclusion of dynamic as well as non-dynamic correlation effects is 

known to be essential to obtain reliable calculated singlet-triplet energy gaps in paramagnetic 

dinuclear complexes. A method which has achieved some success is '"dedicated-difference 

configuration interaction" (DIX!I2)/3 This QSD method (which is applicable to any multiplet 

splitting) calculates the singlet-triplet energy gap direcdy at one geometry, using the same 

reference orbitals for singlet and triplet (usually ROHF triplet geometry and orbitals). This 

reduces the number of configurations in the variational (USD, as many of these configurations 

make exactly the same contribution to the energy of both multiplicities. This method is a 

relatively inexpensive way of including dynamic correlation, and has been effective in 

predicting singlet-triplet energy gaps in compounds such as [CuiCle]-- and [Ni(NH3)4Cl]2--^ 

in qualitative, and to some degree, quantitative agreement with experiment^ 

We determine the singlet-triplet energy gap in Ehh H2Ti(^i-H)2TiH2 by calculation of 

the singlet and triplet energies separately. These are single point MCQDPT energies at the 

geometries and reference waveftmctions of the TCSCF singlet and the ROHF triplet. 

Therefore, orbital and geometry relaxation effects are included. Table 5 shows the calculated 

values of the singlet-triplet energy gap in D211 H2Ti(^-H)2TiH2. It is clear firom Table 5 that 

basis set convergence is very rapid, suggesting large cancellation of error. At the 

MCSCF/TZVP(f,g) and ROHF/TZVP(f,g) levels the singlet 1 Ag state is predicted to be more 

stable than the triplet state by 0.56 kcal/mol (J = -98 cm-i), due to the small Ti-Ti bonding 

interaction discussed earlier. As expected, the inclusion of dynamic correlation stabilizes the 

singlet preferentially to the triplet as the ROHF wavefimction already contains like spin electron 

correlation. MCQDPT/TZVP(f,g) predicts that singlet i Ag is lower in energy than triplet 3B3u 

by 1.43 kcal/mol (J = -250 cm-i). The intramolecular metal-metal interaction in D2h H2Ti(n-

H)2TiH2 is therefore predicted to be antiferromagnetic. As neglect of dynamic correlation 
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(MCSCF) already results in a more stable singlet state, it is unlikely that a more sophisticated 

treatment of dynamic correlation than MCQDPT will change the sign of J. Review of the 

literature supports this, given that MCSCF generally underestimates the stability of the singlet 

with respect to the triplet in these types of systeins.23.45 

To asseses the effect of neglecting geometry and orbital relaxation, calculations were 

repeated with both singlet and triplet at the triplet geometry; first allowing orbital relaxation in 

the singlet calculation and then using the "Grozen" ROHF orbitals for the singlet calculation. 

Constraining both geometries to that of the triplet lowered the singlet-triplet energy gap by 0.05 

kcal/mol and 0.30 kcal/mol without and with dynamic correlation, respectively. The additional 

effect of neglecting orbital relaxation lowered the gap by a further 0.15 kcal/mol and 0.04 

kcal/mol without and with dynamic correlation, respectively. These effects are not negligible in 

terms of wavenumbers (0.34 kcal/mol corresponds to J = 60 cm-i). 

The singlet-triplet splitting energy in D2h H2Ti(|j,-H)2TiH2 is for the homodinuclear 

titanium(III) system in which interactions of the Ti centers with bridging and terminal ligands is 

minimal and the Ti-Ti cr-a ground state isotropic interaction is the least perturbed by its 

environment The most closely related experimentally characterized compound is rac-

{[C2H4(T|5-tetrahydroindenyl)2j-Ti(III)(^-H)]2i3 which also has bridging hydrogens. It 

exhibits antiferromagntic behavior (no value for J is reported; only the sign) in line with our 

prediction for D2h H2Ti(^-H)2TiH2. The experimentally measured antiferromagnetic singlet-

triplet splitting in [Cp2Ti((i-OCH3)]2 is 1.53 ± 0.02 kcal/mol (J = -268 ±4 cm-i)^® very close 

to the calculated value of 1.43 kcal/mol for D2h H2Ti(ji-H)2TiH2. Superficially this may 

indicate that effects due to bridging ligands, terminal ligands, and Ti-Ti separation, which is 

3.35 A in [Cp2Ti(fi-OCH3)]2 and 3.04 A in D2h H2Ti(^.-H)2TiH2, are small. However, even if 

one is to trust that the calculated value is accurate enough for such a comparison, it may 
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indicate opposing effects which cancel each other in this case, considering that replacement of 

the (ix-CXTHs) bridging ligands with (Ji-Cl) ligandsis.n results in a experimentally determined 

value of J = -1II cm-i (S-T gap of 0.63 kcal/mol), and replacement with (ji-O) will even 

change the sign of the interaction (J = + 8 cm-')- Thus, future work wUl focus on the effect of 

systematic replacement of bridging and terminal hydrogens with other species on the 

fimdamental electronic stmcture of this system, in order to establish trends allowing prediction 

and therefore modification of the magnetic properties of molecules. This seems a reasonable 

goal given that prediction of trends is easier than prediction of absolute J values. 

IV. Conclusions 

Five singlet and five triplet minima were found on the two lowest potential energy 

surfaces of Ti2H6, all with bridging hydrogens. The (n-H)3 Csv staggered and eclipsed 

structures, which have been described in the past by a closed shell RHF reference 

wavefiinction, actually require a 2 electron, 3 orbital FORS-MCSCF reference wavefimction: 

the triplet structures require an ROHF reference wavefimction in which two degenerate states 

are averaged. The remaining minima are adequately described with TCSCF or ROHF reference 

wavefunctions. 

No Ti-Ti bonding is possible in the triplet minima. More surprising is the prediction 

there is little or no Ti-Ti bonding in the singlet minima as well. In the (|A-H)3 Csv minima both 

of the non-bonded electrons are found on the least saturated Ti. The (H-H)3 Cs minima (lA" 

and 3A") are both purely diradical. Natural orbital analysis of the wavefunctions of the (^-H)2 



www.manaraa.com

95 

D2h singlet and the (M.-H)4 D4h singlet show a large amount of diradical character, although a 

slight bonding interaction is predicted in the Dah and D411 singlets. This is supported by 

calculated singlet-triplet splittings of 1.3 and 1.4 kcal/mol for the D2h and D4h structures, 

respectively. All minima are predicted to be stable with respect to 2TiH3. The Cj structure is 

the most stable with an exothermic dimerization energy of ~ 56 kcal/mol. Inclusion of dynamic 

correlation is found to be important, its effects being especially large for the (|i-H)3 and (n-H)4 

structures. 

Comparison of calculated frequencies of representative Ti2H6 isomers with the 

experimental spectra of Andrews et al suggests that the presence of TiiHe in the matrix is 

entirely possible. The same conclusion may reached by comparison of calculated frequencies to 

the spectra of Margrave et al. In Margrave's experiment TiHs is not observed, suggesting a 

route to Ti2H6 other than the dimerization of TiHs. TiH2 + TiH4-> Ti2H6 , and Ti2H4 + H2 

Ti2H6 are suggested as possibilities. The absence of H atoms in the Margrave experiment will 

reduce the likelihood of the hydrogenation reaction Ti2H6 -> Ti2H8 on annealing, due to 

unfavorable thermodjmamics when the reaction occurs with H2. 

Localized orbital plots of the teraiinal Ti-H and bridging Ti-H-Ti bonds are much the 

same as those seen in Ti2H8. The lack of Ti-Ti bonding in Cj, D4h, and C3V singlets may be 

rationalized in terms of location of electrons, symmetry and orientation of d-orbitals. This is 

not the case for the Dih singlet which appears ideally suited to Ti-Ti a bond formation. An 

LCD energy analysis suggests that the lack of Ti-Ti bonding in the D2h isomer arises due to 

steric crowding; i.e. unfavorable interactions of the bond with the surrounding molecule. 

The D2h H2Ti(p,-H)2TiH2 structure is an excellent prototype for the many 

homodinuclear titanium (IH) compounds known experimentally. A good example is titanocene 
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dimer [(T|5-C5Hs)Ti(ji-H)]2(|i-T|5rn5-CioH8). Experimental evidence suggests either a Ti-Ti 

bond or a large singlet-triplet energy gap in this compound. Since we find no such bond in 

H2Ti(|i-H)2TiH2 and a very small singlet-triplet energy gap, it appears that the presence of the 

cyclopentadienyl rings and/or the distortion of the bridge out of the plane must modify the 

electronic structure in such a way that bond formation is facilitated or the singlet is stabilized 

significantly, preferentially to the triplet This is the subject of an ongoing study. 

Paramagnetic homodinuclear titanium (IH) compounds for which the singlet is more 

stable than the triplet are antiferromagnetic. If the triplet is more stable than the singlet, the 

compound is ferromagnetic. By this criterion we find H2Ti(^-H)2TiH2 to be antiferromagnetic, 

and conclude that this is due to a small bonding interaction between Ti's in the singlet (isotropic 

interaction). 
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Table 1. Calculated total energies (in Hartrees) of TiHi ^A'l slate. 

Point TZVP TZVP(0 TZVP(f.g) 
Group State ROHF(opt) MCQDPT« RMP2« MCQDPT« RMP2" MCQDPT« RMP2« 

D.ih 2A', -850.07580 -850.16532 -850.16293 -850.17907 -850.17635 -850.18219 -850.17944 

« All single-point energies calculated at the ROHF/TZVP optimized geometry. 
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Table 2. All energies relative to 2 x TiHj Dsh ^A'l monomer energy in iccul/mol (E = EiTioHft) - E( 2 x TiH.i). 

Point 
Group 

Singlet Triplet 
Point 
Group MCSCF 

Stale 
TZVP TZVP(0 TZVP(f.g) 

State 
TZVP T Z \ P { f )  TZVP(f.g) 

Point 
Group 

Aclivc Spacc Stale 
MCSCF MCQDPT MCQDPT MCQDPT 

State 
ROHF RMP2 RMP2 RMP2 

Cs 
not 

applicable 
ROHFused 

lA" -41,0 -55.0 -55.2 -56.1 3A" -41.5 -53.2 -55.5 -56.4 

D2h (2,2) 'Ag -42,9 -49.6 -51.2 -51.6 3B,„ -42.4 -48.5 -50.0 -50.3 

D4h (2,2) 'Ag -22.2 -45.2 -50.5 -51.5 3A2„ -21.8 -44.0 -49.1 -50.1 

C3V 
cclipscd 

(2,3) 
'A, 13.3 -27.1 -31.2 -

3E -11.9 -45.0" -48.3« -

staggered 'A, 13.3 -22.4 -26.3 - 3E -11.8 -40.2" -43.2« 

" Dynamic correlation effects in the Ciy 3E structures were calculated using the MCQDPT method. 



www.manaraa.com

102 

Table 3. Calculated Harmonic Vibrational Frequencies for selected Ti2H6 isomers. 

Vibration^ Intensity / 
km mol-i 

Frequency^ / 
cm-i 

Scaled 
Frequency^ 

/cm-i 

Exptl. 
Frequency/ 
/cm-1 

Exptl. 
Assignment 

Cs(iA") 

Ht bend 296.2 625.7 593.0 500 (broad) TixHy 

Hbr bend 402.3 744.2 705.2 

Hbr bend 376.1 831.0 787.5 

Hbr bend 751.7 1204.3 1141.3 

Ti-Hbr str 398.0 1375.7 1303.7 1305 

Ti-Hbr str 1829.6 1557.4 1475.9 1485.2 TixHy 

Ti-Ht str 921.2 1656.8 1570.1 1570 

Ti-Hi str 356.6 1706.6 1617.2 1632 TixHy 

DlhCAg) 

Ht bend 376.6 574.8 544.7 500 (broad) TixHy 

Hbr bend 175.4 744.6 705.6 

Ti-Hbr str 663.8 1128.5 1069.4 

Ti-Hbr str 2249.7 1412.9 1338.9 1330 

Ti-Ht str 2040.1 1679.5 1591.5 1590 

Ti-Ht str 328.7 1749.2 1657.6 1656.7 TiH4 

1^4h(^Ag) 

Hbr bend 213.8 (x2) 943.9 894.4 

Ti-Hbr str 2360.8 1254.6 1188.9 1200 TixHy 

Ti-Hbr str 898.8 (x2) 1290.7 1223.1 1225 TixHy 

Ti-Ht str 1437.5 1685.0 1596.8 1590 

C3v (3E) 

Hbr bend 136.9 (x2) 808.3 766.0 

Hbr bend 411.1 892.5 845.7 

Ti-Hbr str 1659.4 1139.3 1079.6 

Ti-Hbr str 313.1 1485.2 1407.4 1422.7 TiH(H2) 

Ti-Ht str 711.6 (x2) 1742.3 1651.0 1640.5 TixHy 

a Ht = terminal hydrogen; Hb= bridging hydrogen. ^ Only calculated frequencies with 
an intensity greater than 100 km/mol are reported. <= Scaling factor of0.948 used, d Reference 
6. 
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Table 4. Thermodynamics of the reactions Ti2H(, + H2 Ti2Hjj and Ti2Hft + 2H Ti2Hs for 
selected isomers of Ti2H6 and Ti2HK. The MCSCF and MCQDPT methods are used for Ti2Hf,; the RHF 
and MP2 methods for Ti2H)). Energies are in kcal/mol. 

H, 

MCSCF/RHF MCQDPT/MP2 

TZVP TZVP(0 TZVP TZVP(0 

+73.6 +71.0 +19.9 +15.5 

D2h i ' \)  

2H» / 
-2h 

-10.8 -13.5 -78.0 -81.9 

Hn 

2H« 

+72.7 +70.0 +22.5 +18.6 

-9.8 -12.5 -80.6 -85.1 

Q ('A") 
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Table 5. Calculated singlet-triplet energy gap (E(triplet) - E(singlet)) for D2h H2Ti(n-H)2TiH2 
in kcal/moL 

Basis Set 
Method of Singlet/Triplet Calculation 

MCSCF/ROHF MCQDPT2MCQDPT2 

TZVP 0.56 1.33 
TZVP(f) 0.56 1.40 

TZVP(f,g) 0.56 1.43 
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Ti-Ti .V<M 
(3,()6) 

122,7* 
(I22..V> 

I>2h 'Ag(^B,„) 

H8.I* 
(89.6*» 

Ti-Ti 2.7(1 
(2,74) 

93.5* 
(W.4*) 

Ti-Ti 2,81 
(2.81) 

Ti-Ti 2,.50 
(2..M) 

(11.14-) (91.9*) 

6.5.6* 
(65..5* 

KKI.O* 
(W,8*) 

1.78 
(1.78) 

1.95 
(t.95) 80,0* 

(80.2*) 

D41, Ag( A2u )  

94.4* 
(94.9*) 

80.2* 
(78.2*) 

TS.r 
(73.4-) 

C3, 'A,(3E) 

65.7* 
(65.8*) Cs 'A" (^A") 

75.5* 
(75.6*) 

88.4* 
(9().r) 

Ti-Ti 2.7(1 
(2.8()) 

«2.4* 
0(I2.,V) 

79.9* 
(77.7*) 

Cjv 'A,('E) 

Figure 1. MCSCF/TZVP singlet and ROHF/TZVP triplet local minima on the two lowest 
potential energy surfaces of Ti2H6. Bond lengths are in Angstroms. Brackets signify triplet geometry. 
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2a) 

E c - C ~_'*t 

e 

average of 2 states 

E = -6.9 kcal/mol 

'A 1 ai -H-

Ai c ; -V_— + c —_-H-

(2,3) MCSCF 

E = -13.6 kcal/mol 

Figure 2. a) Possible singlet states for isomers. Energies given are for the eclipsed 
isomer and are relative to the closed shell RHF energy with double occupation of the aj 
orbital, b) Possible triplet states for C^y isomers. Energies given are for the eclipsed 
isomer and are relative to the closed shell RHF energy with double occupation of the aj 
orbital. 
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2b) 

3 A e 4- -i-
^ ai 

E = -32.9 kcal/mol 

>v 

average of 2 states 

E = -38.9 kcal/mol 

Figure 2. Continued. 
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1.77 A 

Figure 3. ROHF/TZVP optimized minimum energy structure of TiH3. 
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a)Cs 

states 

Figure 4. a) Three dimensional plots of the 2 HOMO's in the C^, 02^, and 04^ TijH^ isomers. For the 02^ and D4h singlets 
these orbitals constitute the active orbitals used in the TCSCP calculations. Occupation numbers shown for the D2h and D41, 
i.somers are from a natural orbital analysis. Singlet and triplet slate orbitals are qualitatively the same; therefore only one set is 
shown. The orbital contour value used in the plots is 0.04 Bohr3/2. b) Three dimensional plots of the three active molecular 
orbitals in the 'A| and 'ECjv eclipsed isomers. Singlet occupation numbers are from a natural orbital analysis. Singlet and triplet 
state orbitals are qualitatively the same; therefore only one set is shown. The orbital contour value used is 0.04 Bohr^'^. 
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states 

lu 

o 

Figure 4. a) Continued. 

blu 

occ. # 

0,89 

1.0 
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D4h 

states 

^A2u  

bjg 

occ. # 

1.09 

1.0 

l>2u 

OCC, # 

0.91 

1.0 

Figure 4. a) Continued. 
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b)C3, 

e 

states occ. # 

^Ai 0.25 

% 0.50 

OCC. # 

ai 

states occ. # 

^Ai 1.51 

1.00 

0.25 

0.50 

Figure 4. Continued. 
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a) 

Ti-HLMO 

Ti-H-Ti LMO 

Ti-H LMO 

C3V 

Ti-H-Ti LMO 

Ti-H-Ti LMO 

Cs 

Ti-H-ri LMO 

Figure 5. a) Localized orbital plots showing representative titanium-terminal hydrogen 
bonds and titanium-hydrogen-titanium bridging bonds in the isomers of Ti2H6. Contour 
increments are 0.05 Bohr"^. b) Localized orbital plots showing unpaired/non-bonded 
electrons for D2h, D4h» and C3V Ti2H6 isomers. Singlet and triplet plots are qualitatively the 
same so only one set for each structure is shown. For D4J, the two d-orbital lobes with 
opposite phase are in the plane perpendicular to the page. Only one of three equivalent plots 
shown for the Cjv isomer. Contour increments are 0.05 Bohr^'^. 
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b) 

'^N 

D4h 

w 

Figure 5. Continued. 
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AE(lolal) = E(bonded - E(non-bonded 
system) system) 

APE(«)iul) 
AKE(tot»l) 

+ 0.7237 h 
- 0.5286 h 

AE(lolul) + 0.1952 h 

i 
LCD analysis used to decompose this energy difference AE(total) into contributions from; 

1) bond formation (APE(bond)and AKE(bond)) 

2) rearrangement of remaining electrons in the rest of the molecule (APE(intemal) and AKE(rest)) 
3) bond/unpaired electrons interacting with the rest of the molecule (APE(interaciion)) 

Figure 6. LCD energy analysis strategy for H2Ti(^-H)2TiH2. AE(tolal) is energy difference (in Hartrees) between the 
system constrained to have a Ti-Ti bond and the non-bonded diradical triplet system. 
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APE(bonil) +0.4138 h 

AKE(bond) -1.7184 h 

APE(in«ernal) -0.6221 h 

AKE{re.sl) +I.I898h 

APE(inlcraclion) +0.9321 h 

• 

9 9 
OlO OtO d a 

i 
Q 

Orbital expan.sion 

• 

Ti -4 AKE(c(irc) +0.5549 li 

AKEOi-H) +0.5474 h 

Ti 

AKE(bridgc) +0.0875 h 

Ti 

OrbituI conlraclion 

PE y KE i 

• 
0 Q 

ojo ojo 

• 

diffcrcncc in inlcraciion PI2 wiiti 

Unfavorable interactions 

PE i 

Figure 7. LCD analysis breakdown of AE(total) and schematic explanations of energy increases and decreases. 
Small arrows within orbitals indicate movement of electrons when a Ti-Ti bond is formed. 
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a) 

c) 

b) 

cl) 

Figure 8. Density difference plots for a) the Ti-Ti bond; b) the Ti core elecu-ons; c) a terminal 
Ti-H bond; and d) a Ti-H-Ti bridging bond. These plots represent the RHF Ti-Ti bonded 
system's density minus the ROHF triplet s density. For a) and b) contour increments are 0.002 
bohr3; for c) and d) contour increments are 0.001 bohr^. 
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CHAPTER 5. THE EFFECT OF SPIN-ORBIT COUPLING ON THE 

MAGNETIC PROPERTIES OF H2Ti(n-H)2TiH2 

A paper submitted to the Journal of Chemical Physics 

Simon P. Webb and Mark S. Gordon 

Abstract 

Excited states of singlet and triplet H2Ti(n-H)2TiH2 have been calculated using FORS-

MCSCF wavefimctions. The effects of orbital relaxation are determined by optimizing orbitals 

for all states separately and comparing to state-averaged calculations, and are found to be small. 

Dynamic electron correlation included through second-order perturbation is found to have a 

considerable effect on excited state relative energies, but not on the ordering of states. Spin-

orbit coupling effects are introduced by a one-elecffon operator which uses an effective nuclear 

charge to replace two-electron effects. The resulting splitting of 0.182 cm-i between the triplet 

Ms = 0 and Ms = ±1 components is due almost entirely to the angular momentum operator 

perpendicular to the plane of the Ti-H-Ti bridge. An overall ferromagnetic effect of0.645 cm-i 

on the ground state singlet-first excited triplet energy gap is predicted. Orbital interactions 

responsible for spin-orbit coupling effects are identified. 

I. Introduction 

Often the magnetic properties of molecular systems are highly dependent on 

intramolecular interactions. In dinuclear complexes comprising two metal centers each with an 
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unpaired electron, if singlet coupling of the electrons is energetically favored over triplet 

coupling, the interaction is antiferrcmagnetic; if triplet coupling is favored over singlet 

coupling, the interaction is ferromagnetic. ̂ There are a number of effects which can contribute 

to the intramolecular interaction. The magnimde and sign of the singlet-triplet energy gap, 

where the singlet and triplet are the two lowest energy states, and where effects due to spin-

orbit coupling and magnetic dipole-dipole interactions are neglected, is a measure of the 

isotropic exchange interaction. In a previous study on the isomers of Ti2H62 we calculated the 

isotropic exchange interaction of D2h H2Ti(n-H)2TiH2 to be antiferromagnetic with J = - 250 

cm-i, where J is defined by -2J = E(triplet) - E(singlet). 

The isotropic exchange interaction usually dominates spin-orbit coupling and magnetic 

dipole-dipole interaction effects in determining the magnetic properties of dinuclear complexes. 

However, when the singlet-triplet splitting itself is very small and ferromagnetic, these 

normally subtle effects can be important, influencing the magnetic properties of the system in 

the low temperature range. What is more, electron paramagnetic resonance (EPR) experiments 

are generally able to detect these much smaller effects as they result in the zero-field splitting 

(ZFS) of the triplet state Ms components.! 

In EPR experiments there are two allowed transitions within the triplet manifold, 

corresponding to AMj = ±1, and a forbidden transition AMj = 2 (between Ms = +l and Ms = -

1) at half field. The transitions are only observable when the principle axes of the molecule (see 

Figure I) are parallel or nearly parallel to the x, y, z components of the applied magnetic field; 

otherwise they produce only continuous background.3 A AMs = ±1 spectrum, then, consists 

of three sets of doublet peaks corresponding to applied magnetic fields in x, y, and z 

directions. Analysis of the spectrum is carried out by use of an effective spin Hamiltonian H 

associated with the triplet spin quantum number S = l.'^ i 
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H = PH«g.S + S'D-S (1) 

The first term in equation (I) accoimts for the Zeeman perturbation due to the applied magnetic 

field H; g is the gyromagnetic tensor and ^ is the electronic Bohr magneton.The second term 

accounts for dipolar and spin-orbit coupling effects and involves the zero-field splitting (ZFS) 

tensor D. The principal values (diagonal elements) and orientations of g and D are deduced 

from a fit to the experimental data; that is a fit to the measured resonance fields of the allowed 

transitions. The zero-field splitting parameters D and E are then calculated from the principal 

values of D according to equations (2) and (3).'^ The z axis is usually defined by the largest 

principal value of D. 

D = 3Dz/2 (2) 

E = (Dx-Dy)/2 (3) 

D is known as the axial zero-field splitting parameter E is the rhombic zero-field splitting 

parameter. A recent application of EPR spectroscopy and analysis of the resulting spectnrai 

using the method just outlined can be found in a smdy of rac-{ [C2H4(T|5-tetrahydroindenyl)2J-

Ti(IID(H-H)]2.fi As mentioned above, the origin of the splitting of the triplet Ms components 

lies in two types of interactions; the interaction between magnetic dipoles and the interactions 

due to spin-orbit coupling. The spin-orbit coupling interactions are often referred to as 

anisotropic exchange interactions or psuedodipolar interactions, 

The anisotropic exchange interaction tensor De is found in the analysis of experimental 

data by subtraction of the magnetic dipole-dipole interaction tensor Dj firom the total ZFS 
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tensor D. The dipole-dipole interaction tensor is calculated according to an expression 

dependent on g and l/r3, where r is the metal-metal separation: axial and rhombic terms and 

Ed are calculated by application of equations (2) and (3) to this tensor. i The axial and rhombic 

exchange interaction parameters De and Ee are found in practice by simply applying equations 

(4) and (5).5 

De = D-Dd (4) 

Ee = E-Ed (5) 

The axis of the largest principal values in and De may or may not coincide depending on the 

system under smdy. If they do not coincide then the dominant effect determines the definition 

of axial and rhombic; i.e. the largest principal value in D defines the z axis. Experiment has 

shown that D in di-titanium systems is dominated by Dd with the largest element along the 

metal inter-nuclear axis.5 Therefore we have defined the Ti-Ti axis in D2h H2Ti(|X-H)2TiH2 as 

the z axis (see Figure 1). 

The approach just outlined is a purely phenomenological one which extracts the triplet 

splitting energies due to certain phenomena from experiment It does not reveal any information 

on the mechanisms by which these phenomena occur. To this end the parameters De and Ee 

have been used in expressions based on perturbation theory to calculate singlet-triplet splitting 

energies of excited states.^ Two examples are: the smdy of [Cp2Ti(n-OR]2 by Samuel et al5, 

and the study of [Cu2(t-Bupy)4(N3)2j(C104)2 by Gatteschi et al.-^ The aim is not only to 

characterize the excited states, but also to also to establish how the singlet versus triplet stability 

of the excited states affects the spin-orbit coupling related terms De and Ee- A priori prediction 

of the sign and magnimde of these anisotropic exchange effects is cited as the ultimate goal.*^ 
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However, the expressions used are highly dependent on approximations, such as the 

determination and use of orbital energy differences from only the singly occupied orbitals (the 

"active orbital approach")- Also, assumptions are made as to which excited state orbitals are 

included in the spin-orbit coupling scheme, hi addition these expressions can only be used 

when the EPR spectrum is highly resolved, producing reliable values for D and E. This is not 

always the case. To our knowledge ab initio methods have not, until now, been applied directly 

to this spin-orbit coupling problem. Through ab initio calculations on H2Ti(n-H)2TiH2 using 

multiconfigurational wavefimctions, our aim is two-fold: to predict excited state energies, and 

to calculate spin-orbit effects at a level which enables clear identification of the orbital or state 

interactions which cause the exchange effects represented by De and Ee. 

The relative simplicity of H2Ti(n-H)2TiH2 makes it an ideal first candidate due both to 

manageability of calculations and its status as the simplest model for di-titanium(III) systems. 

Any modification of De and Ee by the presence of more complex ligands may then be identified 

readily in any future calculations by direct comparison. 

n. Computational Details 

A triple ^ with polarization (14sl Ip6d/10s8p3d) basis set is used for titanium. This 

consists of Wachter's basis set^ with two additional sets of p fimctionsS and a set of diffuse d 

functions.9 For hydrogen Dunning's (5slp/3slp) basis setio was used. Collectively this basis 

set is referred to as TZVP. 

Preliminary calculations on singlet D2h H2Ti(n-H)2TiH2 were carried out at the RHF 

level. After convergence of this single determinant wavefimction, modified virtual orbitals 
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(MVO's) were generated by feezing the occupied orbitals. forming a cation by removal of six 

electrons and performing one SCF iteration. The resulting orbitals were used as a starting point 

for a two configuration (TCSC^F) geometry optimization. For the triplet state a geometry 

optimization at the ROHF level of theory was performed. 

For the ground state and lowest energy triplet, TCSCF and ROHF wavefimctions have 

been shown to be qualitatively correct.* Excited state calculations require fiilly optimized 

reaction space (FORS) MCSCF calculations i' with an active space that consists of 2 electrons 

in up to 10 orbitals depending on symmetry. 

Dynamic electron correlation effects, when required, are included through single point 

multiconfigurational quasidegenerate second order perturbation theory calculations 

(MCQDPT).i2 

Spin-orbit coupling effects (SOC) are treated using a one-electron spin-orbit 

coupling operator.i3 The operator uses an effective nuclear charge Zetr to replace two-electron 

effects. The Zeff of 9.873 used for titanium was chosen to reproduce the first zero-field 

splitting energy in neutral atomic 3F Ti, J(2—>3) = 170.132 cm-L''*^ A similar Zgff is obtained 

if one chooses to reproduce the doublet splitting in 2D Ti(III). 

All calculations were done using the electronic structure code GAMESS.15 

ni. Results and discussion 

Calculated geometries for the lowest energy singlet and triplet states of D2h H2Ti(|i-

H)2TiH2 at the TCSCF/" I'Z VP and ROHF/rZVP levels, respectively, are shown in Figure 1. 

We first consider the excited states of D2h H2Ti(M.-H)2TiH2, and then examine SOC effects. 

i 
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a) Excited States. It is necessary to consider 2 electrons in 10 orbitals in order to 

arrive at correct descriptions of the excited states of H2Ti(n-H)2TiH2- These orbitals include 

Ti-Ti bonding and antibonding interactions of the type ct a*, 7C K*, and 5 6* with some 

participation of bridging and terminal hydrogen atomic orbitals (see Figure 2). Tables 1 and 2 

show the electronic structures and energies of the first twenty singlet and twenty triplet states of 

D2h H2Ti(H-H)2TiH2. 

The singlet energies in Table 1 are from a state-averaged 2 electron, 10 orbital MCSCF 

calculation at the TCSCF/TZVP lAg ground state geometry (see Figure 1). Starting orbitals 

were symmetrized (D2h) and resemble those shown in Figure 2. The calculation was carried 

out with no symmetry constraints, with each of the first 20 states weighted equally. Using this 

wavefunction as a starting point and freezing the non-active orbitals, a 2 electron, 10 orbital 

MCSCF triplet calculation was carried out at the same geometry using the same procedure to 

obtain the first 20 triplet states that are detailed in Table 1. These are the orbitals used in the 

SOC calculations described below. 

To assess the effects of orbital and geometry relaxation, as well as dynamic electron 

correlation, a subset of the states shown in Table I was analyzed (see Table 2). The singlet 

energies were calculated at the TCSCF/TZVP lAg ground state geometry; the triplet energies at 

the ROEff/TZVP 3Biu geometry (see Figure 1). Initially, all orbitals allowed by symmetry 

were included in each MCSCF calculation on each state. Then, any orbitals with negligible 

occupation were discarded and the reduced space used for reoptimization of the wavefimction 

and subsequent perturbation corrections for dynamic electron correlation. When more than one 

state of a given symmetry was considered (five i Ag and five 3Biu states), the orbital 

coefficients for each of the roots were optimized separately. 

From Tables I and 2 one can see the effects of orbital and geometry relaxation by 
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comparing the columns headed MCSCF. For the first six states the difference is less than ~ 0.6 

kcal/mol and for the remaining states it is no greater than ~ 1.0 kcal/mol. The MCQDPT results 

in Table 2 show that the effects of dynamic correlation are greater, with differences in the range 

~ 0.3 kcal/mol to - 5.7 kcal/mol between the MCSCF and MCQDPT methods. However, 

except for two cases (Sg.Sg and T9, T10), the MCSCF wavefimction does order the states 

correctly. 

b) Spin-Orbit Coupling. The effects of SOC on the ground state singlet So and 

first excited triplet Ti were determined using a one-electron SOC operator.'3 Since current 

codes do not include the effects of dynamic electron conelation as obtained by MCQDPT in the 

SOC calculation, one does not anticipate quantitatively accurate values for the SOC related 

exchange parameters Dg and Ee. However, one hopes to obtain qualitatively useful 

information. By systematically increasing the number of states included in the SOC calculation, 

ferromagnetic or antiferromagnetic effects can be assigned to mixing of specific states induced 

by SOC. Figure 3 is a schematic representation of the effect of SOC when all 20 singlet and 

triplet states are included in the calculation. Figure 4 shows the effect of systematically adding 

states to the wavefunction; in effect, a decomposition of the total. For the purposes of the 

following discussion, both So and Ti will be referred to as ground states; Sj - S19 and T2 - T20 

will be referred to as excited states. 

The effect of SOC on the ground state singlet-triplet gap in this case is predicted to be a 

ferromagnetic one. This effect, however, is very small compared to the much larger isotropic 

effect (+ 0.6 cm-i compared to - 205 cm-i)- The calculated SOC splitting parameters of De = 

0.018 cm-i and Ee = 0.182 cm-i lie within the range of experimentally determined values for 

related systems. Gatteschi et al found De = 0.376 cm-i and Eg = 0.070 cm-i in their di-copper 

system; * Samuel et al found De = 0.0012 cm-i and Eg = - 0.0065 cm-i for their di-titanium 
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system.5 In the copper system SOC effects dominate: therefore, the axial component is defined 

by the largest element of the exchange interaction tensor De and is perpendicular to the Cu-Cu 

axis; in the dtanium system, however, dipole effects dominate and the axial component is along 

the Ti-Ti axis as defined by the dipole interaction tensor D^. The lack of dynamic correlation in 

the present calculations means that qualitative information, such as identifying which SOC 

interactions are important, is more reliable than the absolute values of De and Nevertheless, 

the agreement with available experimental data is encouraging. 

Figure 4 demonstrates how SOC affects Sq and Ti if the number of states included in 

the SOC is built up firom three (S0-S2, T1-T3), to six (S0-S5, Ti-Te), to twelve (Sq-Si 1, Tf 

Tii). Figure 5 identifies which states are coupled in these calculations and shows cartoon 

representations of the d-orbital interactions deemed responsible for ferromagnetic and 

antiferromagnetic contributions which make up the total effect when all states are included. For 

ease of visualization the cartoons do not represent molecular orbitals; in fact each d-orbital 

represents an unpaired electron localized on a Ti center. 

When only the first three states (S0-S2, T1-T3) are included, T i is stabilized 

preferentially to Sq; there is a ferromagnetic effect of 1.160 cm-i. Inspection of the SOC matrix 

elements (see Figure 5) reveals the interactions responsible are purely between states with CT 

and K interactions, with no participation of the bridging hydrogens. This is consistent with the 

findings of Kahn who predicts ferromagnetic interaction when there is no bridging ligand 

mediation between two d-orbitals in an orthogonal orientation. i Due to symmetry constraints, 

the angular momentum operator which gives rise to all of these interactions is Lz which acts 

along the inter-nuclear axis (see Rgure I). From Figure 5 it can be seen that there is no excited 

state-excited state coupling; this is also due to the symmetry constraints imposed by the angular 

momentum operators. The SOC calculation also shows that the Ms = + l and Ms = -1 
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components of Tu which themselves have mixed with other states due to SCXT, now mix with 

each other forming two spin states via plus-plus and plus-minus linear combinations. One of 

these is degenerate with the Ms = 0 spin state; the other is not. This De splitting is calculated to 

be only 0.020 cm-i. 

The addition of three more states (S0-S5, Ti-Tg) tesults in an antifenromagntic effect of 

- 0.495 cm-i. The ground state-excited state coupling responsible for this effect (see Figure 5) 

is between states with a and 5i interactions (see Figure 2 and Table 1) which do include 

contributions from the bridging hydrogens. Again, this is consistent with the findings of 

Kahn. i Introduction of these states also results in a small but significant coupling between 

excited states that results in indirect coupling of more excited states with the ground states. Ee 

is calculated to be 0.181 cm-i, suggesting that the splitting of the Mj = 0 and the Mj - ±1 Ti 

levels is due almost entirely to the effects of the introduction of these three states and the 

resulting SOC interactions. The angular momentum operator that is responsible for the 

coupling between states with a and 81 interactions is L*, where the x axis is perpendicular to 

the plane of the bridge in the molecular orientation for these calculations (see Figure 1). Based 

on this result, an experimentally determined exchange tensor De in this case would have its 

major component on the x diagonal element. 

The inclusion of the next six states (Sq -Sh , T1-T12) has a small effect that brings the 

energy levels essentially to the same values as those in the fiiU twenty singlet and triplet state 

SOC. The very small antiferromagnetic effect of - 0.019 cm-i appears to arise from a number 

of SOC matrix elements of similar magnitude describing both ground state-excited state, and 

excited state-excited state interactions. Figure 5 shows a canoon representation of the former. 

No additional splitting within Ti results from the inclusion of these states. 

In summary, spin-orbit coupling in D^h H2Ti(|i.-H)2TiH2 obtained with the first twenty 
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singlet and twenty triplet states produces a very small ferromagnetic effect that arises fn)m 

competing ferromagnetic and antiferromagnetic interactions between ground and excited state 

orbitals, as well as interactions between excited states. Splitting of the Ms = 0 and Mg = ±1 Ti 

levels (Ee = 0.182 cm-i) is caused almost entirely by the introduction of S3-S4, and T4-T5 and 

the resulting interactions. The angular momentum operator along the axis perpendicular to 

the bridge plane (see Figure 1) is responsible for most of these interactions. In contrast, 

magnetic dipole-dipole interactions are almost always largest along the inter-nuclear axis (z 

axis). If this is assumed to be so for Dih HiTiCfi-IDiTiHi, the two effects which result in 

splitting of the triplet state have their largest components along perpendicular axes. This has 

been observed experimentally both in a di-copper system'^ and a di-titanium system,^ and 

supports the contention of Samuel et al that they can estimate the Ti-Ti separation accurately in 

their system using the dipolar component of the zero-field splitting tensor, because SCXI! related 

exchange effects are minimal along the Ti-Ti axis. 

IV. Conclusions 

Excited state energies of singlet and triplet H2Ti(M,-H)2TiH2 have been calculated. The 

effect of orbital relaxation (optimizing the orbitals for each state) is found to be small. Dynamic 

correlation makes a considerable difference in terms of energetics, but has little effect on the 

ordering of the states. 

In dinuclear complexes spin-orbit coupling effects can contribute to the splitting of the 

triplet state as measured by EPR spectroscopy. Through ab initio calculations which include 

spin-orbit coupling we have identified which states couple in D2h H2Ti(|i.-H)2TiH2 to produce 
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these contributions. The calculated anisotropic exchange parameter Ee = 0.182 cm-i. which 

corresponds to the splitting of Mj = 0 and Ms = ± 1, is due almost entirely to coupling brought 

about by the angular momentum operator perpendicular to the plane of the Ti-H-Ti bridge (Lx). 

The effect of the operator along the Ti-Ti axis (Lz) was found to be much smaller. This is 

similar to what was found to be the case experimentally in [Cp2Ti(n-OR]2, allowing the Ti-Ti 

separation to be accurately estimated using the point dipole approximation. The ferromagnetic 

effect of spin-orbit coupling on the ground state singlet-first excited triplet energy gap is found 

to be very small relative to the isotropic antiferromagnetic interaction in H2Ti((i-H)2TiH2, and 

therefore plays no role in determination of overall magnetic properties of the system. 

Given the importance of dynamic correlation both in determining the isotropic 

interaction energy and m the effect it has on excited state energies, a first step toward achieving 

reliable absolute values of De and Ee can be made with its inclusion in the spin-orbit coupling 

calculations. 

The calculations presented here should be viewed as a first step in using ab initio 

computational chemistry techniques to determine how the SOC induced exchange contribution 

to zero-field splittings is modified by bridging and terminal Ugands in paramagnetic dinuclear 

titaniumCm) compounds. 
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Table 1. Electronic structure and MCSCF/TZVP energetics for the first 20 singlet and triplet 
states of D2h H2Ti(^-H)2TiH2. Energies (kcal/mol) are relative to the ground state lAg. 
SBBSBBSaBaaBSaBHBBHBaBmBaSBaBnaBHHHHHHaHnaaaBBaBSaSBSBBBBSBSBBBB 

Singlets '̂ Triplets  ̂

State Configurations MCSCF 
(2,10) 

State Configurations MCSCF 
(2,10) 

So .(<y)2(o*)2 0.00 Ti 3BIU (oo*)'-i 0J9 

Si iBjg 4.29 Ti «J7t)l-l ((TJt*)!-! 4.18 

Sa 4.41 T3 3A„ (07t*)l.l (ff'JC)l-l 4.47 

S3 'Ag (7C)2 (Jf)2 8.78 T4 3Btu (jnt*)i-i 8.83 

S4 lB3g 18.00 Ts 3B3g (<i5i*)i-i (a*5i)i-i 17.25 

Ss 1B2U 20.69 T6 3B2U (c5i)'.i ((T*6I*)M 19.78 

S6 lB2g 22.89 TT 3Bag 22.25 

S? IB3U (rc5i)I.I 23.66 Tg 3B3U (7t5,)I.I (jc*5i*)i.i 22.97 

Ss IBiu «Il<Ti*)Ul (02<r2*)^-^ 27.40 T9 3B3U (cr52)'-i (<T*52*)'.I 27.44 

S9 IBju 28.04 Tio ^Biu (CTi<Ti*)l-' (cr2<T2*)'-' 27.58 

Sio 'Ag (CTi<ji*) 2J(a2<r2')^ 28.60 Tii ^Ag «ii<j2)'*' (Oi'CTa*)'*' 28.58 

Sn 'Bag (ct52')M (C*82)I-I 29.31 TI2 3B2g (ct52*)'-1 «T*62)1-' 29.57 

Sl2 1A„ 32.37 TI3 3A„ (07t*)M ((T*JC)M 32.26 

Sl3 •Big {<T7t)l-l (<7*7:*) I-' 32.71 TI4 3B2U (Jt52)'-' (Jt*52*)'-' 32.42 

Si4 'B3g (JtSo*)'-' (7t*52)l>l 32.96 T,5 ^Big (<J7t)l.l (CT*Jt')I.l 32.54 

Sl5 IB2U 33.11 TI6 ^B3g (KS2*)'-' (re*52)'-' 33.44 

Si6 'Ag (gt)2 (8i*)2 34.56 TI7 3B,u (5i5i*)i.i 40.10 

Sl7 {gl62*)M (5I*52)M 43.45 TI8 3A„ (5i62*)M(5j*62)i.i 42.34 

Sl8 'Bau 45.47 TI9 3B2„ 43.62 

Sl9 'B3g 47.05 Tao 3B3g (a5i*)M (<j*5i) '-i  47.48 

a Singlet states are from a single 2 electron, 10 orbital MCSCF/TZVP calculation at the 
I Ag ground state geometry and are weighted equally. ̂  Triplet states are from a single 2 
electron, 10 orbital MCSCF/TZVP calculation at the i Ag ground state geometry. 

represents the following configurations: 
Config. # a <j* n K' 

1 1 0 1 0 
2 0 1 0 1 
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Table 2. Excitcd state energies (kcal/mol) of D2h H2Ti(|j-H)2TiH2. Energies are relative to the ground stale i A .̂ 

Singlcl" Triplet'' 

Slalc Natural Orbital Occupation Mcscr- MCQDI>T Stale Natural Orbital Occupation MCSCP MCQDPT 

So 'Ag (0|)>»»(0|')n89 0.00 0.(M) Ti ^B,„ (0|)«00(0,*)>0" 0.56 I..13 

S| 'B.g (O|)0.53 (n)<' 53 (o,*)Q.47 {n*)0A7 4.80 4.08 '"2 ^B,g (0|)0.54 (;i)0..'54 (Oi')O 46 (Jt*)" 46 4.49 3.99 

S2 lAu (0|)<>«(r)0«(a,*)0.48(rt)0.4K 4.91 4.43 h (O|)0.52 (n*)l>.52 (o,»)0.48 (jt)0,4 4.74 4.43 

Sj 'Ag <It)>03(n»)0,97 ».24 )».24 U ^B,u (n)»00(n»)l.00 7.85 9.90 

S4 'B3g (O|)0 6l (5,*)0.6I (o,*)0.39(g,)0.39 17.78 15.44 •^B.ig (0,)0.6I (8,*)0.6I(ct,')0.39(S,)0.39 16.88 13.94 

Ss 'B2„ (0|)0.45 (S,)1)45 (o,*)t).55 (8,»)0.55 20,36 19.62 T6 ^B2„ (O|)0.45 (8|)0.45 (0|»)0 55 (8|*)0.55 19.31 IK.(K) 

Sfi 'Bag (n)0 59(8,')0.59(„»)0.41 (5,)0,4» 23.47 22.02 T7 ^B2g (n)0.60 (8,')0(»0(,i*)0,4t (8,)0,4» 22.35 20.11 

S? 'B3U (n)« '»3 (6|0.43(n*)0.57 (5,*)0.57 24.22 23.38 Ts •^B.IU (rt)»42(8,)"-42(;f)0.58(8,')0,58 23.03 21.72 

SK 'B,u (O,)0.57 (0|*)043(02)"57 (02*)"'•3 28.11 24.15 T9 ^B,u (O,)0.6l (82)0.61 (a,»)0.39(82*)0.39 27.94 22.20 

S9 'B3U (O,)0.60 (82)0,60 (O)*)040 (82*)0.40 28.25 22.63 T,() ^B,„ (O|)0.52 ((j|*)0.56 (02)048 (O2*)044 27.87 23.81 

S|() 'Ag (O|)052 (O|»)0.56 (02)0-48 (O2»)044 29.30 25.60 T|| 3A, (O|)0.49 (o,*)0.5l (02)0.49 (O2«)0.5l 28.82 24.80 

S|| 'B2g (O|)0'«6 (82*)0.46(O,*)0.54 (82)0.54 29.63 25.76 T,2 •^Bzg (01 )0 46 (S2» )0.46(o, • )0.54 (82)0.54 30.04 26,29 

S)6 'Ag (5,)069(8,*)l,3l 34.09 33.74 T|7 ^B,u (6,)I.OO(8,»)I.OO 38.39 39.97 

- •Ag (52)'-3»(82*)0 70 52.76 47.95 - •^B,u (82)1.00 (82*)I'»O 57.33 57.69 

1 Singlet energy calculations were obtained at the ground state i Ag geometry. If Triplet energy calculations were obtained at the 
lowest energy 3B3u geometry. 
A separate MCSCF/TZVP calculation was done for every excited state allowing the orbitals to be optimized specifically for the state 
in question. The natural orbitals are those defined in Figure 2. 
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Ti-Ti 3.04 
(3.06) 

103.7° 
(104.4°) 

\ ̂  122.7° 
(122.3°) 

1.77 
(1.77) 

D2h ^Ag(^Biu) 

Figure 1. MCSCF/TZVP singlet and ROHF/T2^VP triplet geometries of 
D2h H2Ti(^-H)2TiH2. Bond lengths are in Angstroms. Brackets signify 
triplet geometry. 
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H ''itt 

H biu 02* 

bsu ^2 big Si 

Figure 2. Thiee dimensional plots of the natural orbitals from a 2 electron, 10 orbital 
MCSCF/TZVP calculation, optimized for the ^Ag ground state of D2h H2Ti(M.-H)2TiH2. 
For the ground state, occupation numbers for these active space natural orbitals is zero 
except for CTi and Oi*. The shapes of these orbitals remain qualitatively the same in 
excited state calculations. The orbital contour value for the plots is 0.04 Bohr'̂ . The z 
axis is defined by the Ti-Ti axis, the Ti-H-Ti bridge is in the yz plane, and the Ti-H 
terminal bonds are in the xz plane. 
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Ti 

204.877 cm 

S_J' O 

12.188 cm"' 

12.632 cm 

E- = 0.182 cm 

De = 0.019 cm" 

L \  

Ms 

Total ferromagnetic effect (triplet stabilized preferentially to the singlet) 
of 0.645 cm"'. 

Figure 3. Schematic representation of the effects of a spin-orbit coupling 
calculation on Sq and Ti which includes the first 20 singlet (So - S19) and triplet 
(T1 - T20) states of D2h H2Ti(^i-H)2TiH2. Dg and Eg are the axial and rhombic 

exchange parameters, respectively. 
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States included in SOC; S()-S2, T 

S0-S5. 'Ti-T/j 

8.294 cm 

0.319 cm 
4.016 cm" 

204.877 cm 

De = 0.020 cm Bj = 0.181 cm 
203.717 cm Dj = 0.020 cm 

2(M.23I cm 

7.154 cm 

4.692 cm 

•0.337 cm 

Pcrromagnclic cffcct; Anlifcrromagnciic crfeci; Andfcrromugnctic cffccl; 
+ 1.160 cm' -0.495 cm' -0.019 cm' 

Figure 4. Decomposition of the total effect of .spin-orbit coupling on S„ and T| by adding the states 
included in the calculation a few at a time. 
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S0-S2. T1-T3 

f N 
Pcrroinagnclic cffccJ: 
+ t.l()Ocm' 

"III* ^ l>c = 1)020 cm '.Ec = l).l)()()c(ir 

All siuics which arc cuuplcU 
by S()C matrix utciiKnis. 

So-T, 'Aj-'B,g 

T,-T.i 

Ti-S, 'Biu-'Au 

Only Interaeiion 

^0-^5' TI-T6 

A ( \ 

Antifcrromugnclic circct; 
- 0,495 cm' 

l>c = 0()20cm '.E, = 0.181 cm ' 

Aiidliional stiilcs couplud by 
significant SOC matrix ulciiK-nts. 

Ground slalc-cxcilcd stale clciiwnls: 
S.rT, 'Ag-X,„ 
Ti-Tr, 
TiS, 

Sulcctod cxcitcd statu-uxcilcd state elements; 

T,.T4 'A„-'B|u 

T,-T6 X-'BJU 
S2-T4 'A„.'Bm 

D(>minunt New Intcruclion 

o 

Ground slale-cxciicd slate 
0 

Ground slate-cxcitcd state 

So-S||, T|-T|2 

A 

Antil'crromugnciic cITcci; 
-0.019 cm' 

l)c = 0.l)20cm ',Ec= 0.181 cm ' 

Additional .Slale.s amplcil by 
signiricant SOC mulnx elements. 

Ground stute-excited state elenwms'. 
S(|-T|2 'Ag-'Bjj 
T|-Ty 'B|U-'Bju 
T,-S, 'B|„-'B.I„ 

Selected excited stute-excited state elements: 

TfT4 X-'B|u 
T.,-Tr. X-'B2u 
S2-T4 'A„--'H,„ 

Duminunl New Interaction 

'8' 
Note; ihii i> (lie lurgcM ground ttale-excilcd 
stale inlemction Several cxcilcii unle-cxcited 
iiaic inienKiliins have timilor matrix elenKiiis. 

Figure 5. States which are coupled via spin-orbit coupling (with non-negligble matrix elements). With addition of more states in 
each calculation (e.g. going from S0-S2, T1-T3 to S0-S5, Tj-T^) only the new couplings are identified (the couplings identified in 
the previous column (e.g. S0-S2, T1-73) are still present. Only selected excited stale-excited stale couplings are explicitly identifici 
as they are numerous. 
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CHAPTER 6. INTERMOLECULAR SELF-INTERACTIONS OF 

THE TITANIUM TETRAHALIDES TiX4 (X = F,Cl,Br) 

A paper to be submitted to the Journal of Physical Chemistry 

Simon P. Webb and Mark S. Gordon 

Abstract 

Ab Initio calculations have been performed on the closed shell molecules TiX4 and 

Ti2X8 (X = F, a, Br) in order to determine the magnitude and the nature of the intermolecular 

self-interactions of the titanium tetrahalides. Geometry optimizations have been carried out 

using an effective core potential basis set with polarization, including the effects of dynamic 

electron correlation through MP2. The importance of higher order correlation effects is 

examined through CCSD(D single-point energy calculations. Basis set effects are investigated 

using MP2 single-point energy calculations with large all electron basis sets. TiiFg is predicted 

to be a bound dimer with bridging bonds, stable by - 9.6 kcal/mol relative to separated 

monomers. Ti2Q8 and Ti2Br8 are predicted to be weakly bound dimers whose structures are 

that of associated monomers. TiiClg is exothermic by 4.5 kcal/mol relative to separated 

monomers. Transition states have been found which represent paths to halide exchange 

between monomers confirming the contention that unexpected NMR line widths found by Pratt 

for TiCU are due to dimerization and CI exchange. 
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The titanium tetrahalides are considered to be among the most important titanium 

compounds as they are used as starting materials for the preparation of many organo-titanium 

systems.i This is especially tme of TiCU which is the precursor for a number of Ziegler-Natta 

catalysts. 1-  ̂Due to the importance of this class of compounds, an understanding of their 

basic fimdamental chemistry through experiment and ab initio calculations is an appropriate 

goal which has received considerable attention. 

Gas phase TiF4 has been made by the reaction between TiCU and NaF, and its infra-red 

spectrum has been measured.'̂  Confiisioa over peak assignments due to the possible range of 

products (TiFnCU-n, n = 0-4) was eliminated by ab initio calculation of the vibrational 

frequencies of all these products.5 Another theoretical smdy investigated the complexes 

between H2CO and TiCU.̂  RHF calculations using a double ̂  quality basis set found that 

within the (H2CO-TiCl4)2 dimer, H2CO was found to interact with TiCU more strongly than in 

the monomer, illustrating the modification of the reactivity of the titanium tetrahalides due to 

their intermolecular interactions. 

Experiment has shown TiF4 to be molecular with a coordination number of four in the 

gas phase and a polymer chain with a Ti coordination number of six in the solid stated (the 

exact structure is unknown). In contrast gas phase and solid state TiCU and TiBr4 are found to 

be molecular with Ti coordination numbers of four.̂ a These observations are indicative of 

considerable attractive intermolecular (dimer) interactions in the tetraflouride and little or no 

attraction in the other tetrahalides. The lack of monotonic behavior of the melting and boiling 

points of the titanium tetrahalides  ̂(see Table 1) provides further evidence of this. 

Consideration of additional experimental evidence suggests there is attractive 
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intermolecular interaction in TiCLj. NMR studies by Pratt suggest that liquid 7104 exhibits 

some "local order" which involves chlorine exchange between monomers.' Pratt based his 

conclusions on measurements made on both mixed TiCVVCU solutions and pure TiCU 

solutions. The TiG4A^Cl4 mixture produced only one 35a NMR signal, and the shift of this 

signal was dependent on the TiCVVCU ratio. This led to the conclusion that there must be 

rapid exchange of chlorines in TiC VVCI4- Furthermore, ±e line width was greater than 

expected, which Pratt explained as "arising from an exchange not quite rapid enough to 

produce a complete collapse of the two signals". In pure TiCl4 the 35a NMR line width was 

found to be larger than expected and temperature dependent, becoming narrower on heating 

over a small temperature range (23°C - 67°C). Again it was concluded that there is rapid 

exchange of chlorines between monomers, and that the increased line width is due to two 

superimposed lines resulting from two different chlorine environments, possibly those in the 

monomer and in the dimer. 

A more recent smdy discovered the presence of TiCU dimers at cryogenic 

temperatures. 10 The abundance of the dimer was found to be dependent on the deposition rate, 

and the authors suggested that kinetics are important in the dimerization process. The existence 

of such dimers establishes that an attractive interaction exists between TiCU monomers and 

offers a reasonable mechanism for the chlorine exchange observed in the earlier work of Pratt.9 

No experimental data is available on possible intermolecular interactions between TiBr4 

monomers. 

Ab initio studies of the dimerization energies of other halide systems such as 

magnesium dihalide clusters, 11 zinc, cadmium, and mercury dihalide dimers, • 2 and 

chlorogallane dimers 13 have proved useful in establishing and explaining trends in their 

intermolecular interactions and general reactivity. A smdy of titanium tetrahydride TilU 

revealed a large attractive intermolecular interaction resulting in the formation of strongly bound 
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TiiHg dimers with hydrogen bridges, This may be explained by the electron deficiency of 

titanium and its desire for large coordination numbers due to its unfilled d-shell. The 

introduction of lone pairs in the titanium tetrahalides results in more complicated species than 

the tetrahydride. Reliable determination of the magnitude and nature of the intermolecular self-

interactions exhibited by the titanium tetrahalides and explanation of their differences is clearly 

desirable. In this paper we will present results of an initio study in which we calculate 

dimerization energies of TiX4, with X=F,C1, and Br. 

Presumably, the magnimde of any attractive or repulsive interactions between titanium 

tetrahalide monomers is dependent in part on effects due to the nature of the titanium-halide 

bond. This could include effects due to bond polarity, and to titanium's electron deficiency. 

Steric effects may also play a role in the observed trends due to the increase in size of the 

halides down the group. We use the results of our study on the dimerization of titanium 

tetrahydride as a reference and monitor directly the effect of halide replacement on monomer 

interaction. 

Our aim is three-fold: to provide reliable quantitative information on the intennolecular 

self-interactions of TiX4 (X = F, CI, Br), assess the effect of substituents of varying size and 

electronegativity on intermolecular interaction and the dimerization process, and explore the 

potential energy surface by which halide exchange can occur between two monomers via 

dimers.9 

We use various methods, including population analysis, orbital localization, and 

energy decomposition to analyze ab initio wave functions in order to investigate this system. 
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n. Computational Methods 

Initially, geometry optimizations of the titanium tetrahalides TiX4 (X = F, CI, Br) and 

their dimers Ti2X8 were carried out at the RHP level of theory using the Stevens-Basch-

Krauss-Jasien-Cundari effective core potentially (SBK) basis set with d polarization functions 

(F a = 0.800, a a = 0.750, Br a = 0.389) added to halide atoms. This double ̂  quality basis 

set will be referred to as SBKP. For transition metals SBK does not include the 3s23p6 

electrons as part of the effective core, as their explicit treatment using a one-electron basis set 

has been found to be required for an adequate description of their electronic structure. 

Geometry optimizations were then done with the SBKP basis set using second-order 

perturbation theory (MP2)i6 to account for dynamic electron correlation. 

All stationary points were characterized by calculating and diagonalizing the matrix of 

the second derivative of the energy (hessian): no imaginary frequencies indicates a minimum on 

the potential energy surface; one imaginary frequency indicates a transition state. 

Single point energies using the coupled cluster method, CCSD(T),i7 with the SBKP 

basis set were carried out on selected structures to assess the effects of higher order dynamic 

electron correlation. In addition, for the fluorine and chlorine systems single point MP2 energy 

calculations were carried out with all electron basis sets to asses the adequacy of the effective 

core potential. For titanium a triple  ̂(14sl Ip6d/I0s8p3d) basis set was used. This consists of 

Wachter's basis seti8 with two additional sets of p functions and a set of diffuse d 

functions.20 For fluorine we employed the triple ̂  (I0s6p/5s3p) basis set of Durming;2i for 

chlorine the triple ̂  (I4s9p/8s4p) basis set of McLean and Chandler22 was used. Polarization 

fimctions were added to this triple  ̂basis: f frmctions on the titanium (a = 0.40), two sets of 

i 
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d polarization fiinctions on the halides, and diffuse s and p functions on the halides also. The 

2d polarization function exponents and the diffuse sp function exponents are the defaults in 

GAMESS.23 This basis set is referred to as TZVP. To test for convergence of this TZVP all 

electron basis set« selected single point MP2 energies were carried out retaining the above 

halide basis sets but with an expanded titanium basis set, denoted TZVP(g). This consists of 

the titanium triple  ̂basis described above plus one set of f (a = 0.591), and g (a = 0.390) 

functions, and a set of di^iise s (a = 0.035), p (a =: 0.239), and d (a = 0.0207) functions. 

Exponents used here are optimized for correlated titanium atoms and are due to Glezakou and 

Gordon.24 The semi-core electrons as well as the valence electrons in Ti (3s23p64s23d2) were 

correlated in eiil post Hartree-Fock calculations. Single point energies determined at one level 

of theory (A) using geometries obtained at another level of theory (B) are denoted A//B. 

The RHF and MP2 calculations were carried out using the electronic structure code 

GAMESS;23 the CCSD(T) single point energies were done using Gaussian 92.25 

in. Results and Discussion 

T1X4. The titanium tetrahalides TiX4 (X = F, CI, Br) were found to be tetrahedral at 

both the RHF and MP2 levels of theory. This is consistent with previous ab initio 

calaculations26 and gas phase experiments.27 Calculated and experimentally determined bond 

lengths and total energies are given in Tables 2 and 3 respectively. 

Ti2Xs. The Ti2X8 dimers which were found to be minima and transition states at the 

MP2/SBKP level of theory all possess C2h S5mmietry and ate shown in Figure 1. Energies of 

the dimers relative to the monomers can be seen in Table 4. 
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(a) Molecular Structure and Energetics. First we consider the molecular 

structures of the titanium tetrahalides and their dimers. Calculated Ti-X bond lengths in TiX4 at 

the MP2/SBK level are in excellent agreement with available experimental data (see Table 2). It 

appears that for the TiX4 monomers introduction of dynamic electron correlation has only a 

minimal effect on the calculated bond lengths. For TiF4 the Ti-F bond length is increased by 

only - 0.02 A; for TiCU and TiBr4 the Ti-X bond lengths are both shortened by only ~ 0.01 

A. 

The TiaXg structures found (see Figure 1) indicate large substiment effects due to the 

halide ligands. Only double halide bridged (h-X)2 TiiXg dimers were found; while Ti2H8 

isomers with a (r-H)3 bridging arrangement have been shown to be more stable than those 

with a (h-H)2 bridging arrangement no analogous structures have been found for the halides. 

Other structural effects can be seen by comparing a (n-H)2 Ti2H8 minimum energy structure 

(see Figure 2) with the tetrahalide dimer structures. The analogous di-bridged halide structures 

are actually transition states for exchanging the bridging atoms (see Figures 1 and 3). As 

expected, the halide bond lengths are longer than in the hydride (MP2/SBKP optimized 

geometries). This increase is modest for the fluoride, with the Ti-Ti separation increasing by 

-0.3 A, the bridging bond lengths increasing by ~ 0.2 A, and the terminal bond lengths 

increasing by 0.07 A or less. This is indicative of the small size and large electronegativity of 

fluorine, which results in short bonds. There is then a more substantial increase in these same 

parameters on going from the fluoride to the chloride (~ 0.5 A, ~ 0.4 A, and ~ 0.4 A), 

followed by a modest increase on going from chloride to bromide (~ 0.25 A, - 0.15 A, and -

0.15 A). The large differences between the fluoride and chloride is clearly a result of both the 

increased size and lower electronegativity of Q. The electronegativities of CI and Br are very 

similar; the changes on going from chloride to bromide, then, are due entirely to the larger size 

i 



www.manaraa.com

146 

of Br. Dynamic electron correlation effects on the transition state balide dimer geometries are 

found to be minimal (see Hgure 1). 

In the halide dimer minima the substituent effect is even more apparent. The fluoride 

dimer retains its bridging bonds, though now the bridge is no longer symmetric with Ti-F-Ti 

bridging bond lengths of 1.91 A and 2.13 A (MP2/SBKP optimized geometries). This effect is 

exaggerated greatly in the chloride and bromide where covalent bridging bonds no longer exist. 

Instead, these structures resemble weakly bound Van der Waals complexes. In fact, within the 

dimer the geometries of the TiX4 moieties are hardly distorted from those of the separated 

monomers, with little change from a purely tetrahedral arrangement (see Table 2 and Figure 1). 

For the fluoride minimum dynamic electron correlation has only a minor effect on the structure; 

however, for the chloride and bromide the effect is large. Dynamic electron correlation allows 

the tetrahalide moieties in these dimers to approach much more closely. The Ti-Ti separation is 

reduced by 1.61 A and 1.83 A in the chloride and bromide, respectively, on going from RHF 

to MP2 optimized structures. 

We now consider energetics (see Table 4). Comparison with the Ti2H8 dimer reveals 

that the introduction of halides makes the dimerization process much less favorable. At the 

RHF/SBKP level of theory the fluoride dimer minimum and transition state are stable with 

respect to separated monomers by 8,6 kcal/mol and 6.1 kcal/mol, respectively. For the chloride 

and bromide the transition states are highly unstable with respect to separated monomers; their 

formation is endothermic by 23.5 and 26.0 kcal/mol, respectively. The chloride and bromide 

minima are essentially isoenergetic with their separated monomers (dimerization energies of 

- 0.3 and - 0.1 kcal/mol, respectively). This is consistent with the notion that these are weakly 

bound Van der Waals species, since dispersion effects are not accounted for at the Hartree-

Fock level of theory. 

Table 4 shows that inclusion of dynamic electron correlation through MP2 using the 

SBKP basis set stabilizes all of the dimers with respect to the monomers. The fluoride dimer 



www.manaraa.com

147 

minimum and transition state are now predicted to be more stable than two separated monomers 

by 14.3 and 12.4 kcal/mol, a stabilization of 5.7 and 6.3 kcal/mol, respectively. The chloride 

and bromide minima are predicted to be weakly bound dimers with exothermic dimerization 

energies of 5.2 and 6.3 kcal/mol, respectively. However, the correlation effect is clearly largest 

for the chloride and bromide transition states which are stabilized by 18.3 and 19.4 kcal/mol 

respectively at the MP2/SBKP level. This suggests that electron-electron repulsion is large in 

these bound dimer conformations and therefore steric effects are playing a role in their 

instability. 

To assess the effect of including dynamic electron correlation in the geometry 

optimizations on the energetics, single point MP2/SBKP energies were calculated at 

RHF/SBKP optimized geometries. For both fluoride dimers and for the chloride and bromide 

transition states, MP2//EIHF reproduce the MP2//MP2 energies very well, giving values of 

- 14.1, - 12.2, + 6.2, and + 7.3 kcal/mol. For the chloride and bromide minima, where 

dynamic electron correlation has a large structural effect, this is not the case. MP2/SBKP single 

point energies give dimerization energies of -1.8 and -1.5 kcal/mol for the chloride and 

bromide, respectively, compared with - 5.0 kcal/mol and - 6.4 kcal/mol for the MP2//MP2 

energies. Inclusion of dynamic electron correlation in the geometry optimization, then, is 

essential to properly describe the weakly bound dimers. 

Higher order correlation effects introduced through CCSD(T)//MP2 calculations with 

the SBKP basis set (see Table 4a) are small. The difference between the MP2 and CCSD(T) 

dimer energies relative to separated monomers is only - 2.5 kcal/mol and + 0.6 kcal/mol for the 

Ti2F8 minimum and Ti2Cl8 minimum, respectively. 

It is clear from MP2/TZVP and MP2/TZVP(g) energies at the MP2/SBKP optimized 

geometries that the SBKP basis set over estimates the exothermicity of the fluoride dimer but 

appears to do very well for the chloride (see Tables 4a and b). We expect that the SBKP basis 

set is also reliable for the bromide calculation. The largest basis set, TZVP(g), demonstrates 
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convergence of dimerization energies to - 1 kcal/mol or less. 

(b) Melting and Boiling Point Trends, and Halide Exchange. The 

calculated dimerization energies are entirely consistent with the melting and boiling point trends 

of the titanium tetrahalides. TiF4 has a higher boiling point than TiCU even though it has lower 

molecular mass (see Table 1). This suggests larger intermolecular interactions in TiF4 than in 

TiCU. Other experimental evidence  ̂indicates thatTiF4 forms poljoneric chains in the solid 

phase while TiCU remains in discrete molecular units, again suggesting larger intermolecular 

interactions in TiF4. The dimerization energies calculated during this study (see Table 4b) show 

the intermolecular dimerization energy of TiF4 (- 9.6 kcal/mol) to be more than twice that of 

TiCU (- 4.5 kcal/mol). So, Ti^Fg is a bound dimer with bridging bonds, which is consistent 

with the formation of polymer chains, while the Ti2Cl8 minimum is a weakly bound Van der 

Waals dimer. As TiCU and TiBr4 exhibit almost equal attractive intermolecular self-interactions 

their boiling/melting points resume the trend expected based only on molecular mass. 

Pratt has suggested that chlorine exchange between titanium tetrachloride monomers 

may be a possible explanation for unexpected results in his NMR experiments.' The transition 

states shown in Figure 1 represent possible paths to halide exchange. First we consider halide 

exchange in TiF4 and TiCU dimers, as data from the full range of basis sets is available. Figure 

3 shows a possible mechanism for halide exchange in the fluoride and chloride. 

For the fluoride the entire process is exothermic with respect to separated monomers. If 

the separated monomers are energetic enough not to be trapped in the dimer wells (possible in 

the gas phase) halide exchange and separation of monomers is a barrierless process. The result 

is a monomeric system with very rapid halide exchange between monomers. If the monomers 

have less kinetic energy, come together and are trapped in one of the wells (for example, 

during a phase transition from gas to solid) the small barrier between minima, which is 1.9 
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kcal/mol at the MP2/TZVP level, represents a path to the exchange of bridging fluorines. This 

scenario results in a bound dimer with constant and rapid exchange of bridging fluorines. 

The transition state leading to chlorine exchange is endothermic with respect to 

separated monomers by 5.0 kcal/mol at the MP2/TZVP level. This value represents the 

effective barrier that approaching monomers must overcome to achieve halide exchange. 

Monomers which come together and are trapped in the minima wells are only weakly bound by 

4.2 kcal/mol. These modest barriers to dimerization, chloride exchange, and separation of 

monomers provide a possible explanation of the temperature dependent NMR line widths 

observed by Pratt.' At high temperatures, dimerization, exchange of chlorines, and the 

separation process would be expected to occur very rapidly. Therefore on the NMR time Scale 

only one Q environment is detected and a narrow line width is observed. At lower 

temperatures approaching monomers are more likely to "see" a barrier to dimerization; 

consequently exchange is slower and both monomer and dimers co-exist on the NMR time 

scale. This produces different CI environments and an increased line width. 

Inspection of Figure 3 reiterates the fact that MP2/SBKP energies are reliable for the 

chloride system. This suggests that energies calculated at the MP2/SBKP level for the bromide 

system may also be trusted. We therefore conclude that a similar halide exchange process is 

possible in the bromide system, which would result in comparable effects to those seen by 

Pratt in the chloride experiment 

(c) Bonding. The method of Edmiston and Ruedenburg^s was used to localize the 

molecular orbitals and thereby examine the nature of ±e bonding in the titanium halide 

systems. Plots of the localized molecular orbitals (LMOs) resulting from RHF/SBKP 

localization calculations at the MP2/SBKP geometries are shown in Figures 4-7. Mulliken 

populations of these localized orbitals are highly basis set dependent and inadequate for a truly 

meaningful assignment of electrons to Ti and X (X = F, CI, Br). However, the method is 
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useful in determining trends in a series of molecules where an equivalent basis set is used 

throughout; therefore, MuUiken populations of the LMOs are also presented. 

Figure 4 shows the LMOs of TiX4 (X =: F, Q, Br). Inspection of these plots clearly 

reveals the presence of Ti-X a bonds and also suggests that lone-pair back-bonding is 

occurring. MuUiken populations of the a bonds confirm the expected trend in this series of 

molecules, revealing a highly polarized Ti-F bond, and Ti-Q and Ti-Br bonds which are still 

polarized but much less so. Populations of the lone-pair LMOs are indicative of the trend in the 

degree of back-bonding. Ti LMO populations are 0.06,0.11, and 0.11 electrons for the 

fluoride, chloride, and bromide respectively. This suggests the degree of back-bonding to 

follow the trend F<a=Br, though the differences are clearly very small. 

Figures 5,6, and 7 show selected LMOs of Ti2X8 (X = F, Q, Br). Both the Ti2F8 

minimum and transition state orbitals are presented as they are both bound dimers with 

bridging bonds (see Figures 5a and b). As the Ti2Cl8 and Ti2Br8 minima are weakly bound 

dimers with no bridging bonds, the perturbation of the monomer LMOs is not visually 

apparent; therefore, their LMOs plots are not shown. The Ti2Cl8 and Ti2Br8 transition states do 

have bridging bonds, so their plots are shown (see Figures 6 and 7). 

For the transition states only one of four equivalent bridge LMOs is shown. The 

bridging arrangement is not a 3 center, 2 electron bond like that found in Ti2H8;i'* the LMOs 

clearly show participation of "lone-pair" electrons in the bridges resulting in a Ti-X-Ti bridge 

made up of two 2 center, 2 electron bonds. In total, the two halides in this arrangement donate 

6 electrons and the titaniums donate 2 electrons to the bridges. Each of the bridging halides 

therefore has 2 remaining non-bonding lone-pairs (one is shown). The fluoride minimum does 

not have four equivalent bridging bonds; it possesses a long bond, short bond Ti—^F-Ti 

arrangement. These two non-equivalent bonds are shown in Figure 5 b. 

The LMO plots involving terminal halides show titanium-halide a bonds and also the 
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same kind of lone-pair back bonding character seen in the monomers (see Figure 4). 

(d) The Dimerization Process. In a study on the dimerization of BF3, Nxumalo 

and Ford^s discounted several dimer structures which they predicted to be exothermically 

stable with respect to monomers. Their reason was an energy barrier which, they claim, 

resulted from large unfavorable distortion energies of the monomers. In fact, their approach 

which separates the energetics of dimerization process into two distinct stages: a) distortion of 

the monomers, and b) reaction of the distorted monomers to form a dimer, produces an 

artificial barrier. Such a barrier will always appear if die monomer geometries are significantly 

distorted in the dimer. In reality the energetics of the process of dimerization are determined by 

a continuous competition between endotheimic effects due to structural distortion and 

exothermic effects due to monomer-monomer interaction, during the approach of the 

monomers as well as at the end point. 

A more physical, computational approach, then, to determine whether a barrier exists 

is to carry out a number of constrained geometry optimizations where oidy the distance 

between monomers is constrained (for example constrain the Ti-Ti distance only), thereby 

creating a reaction path to dimerization. This method was used to establish that there is no 

energy barrier to the dimerization of TiH4,i'̂  and is applied here to TiF4 and TiCU. 

These constrained optimizations were carried out on the 2TiF4 and ITiCU systems at 

the MP2/SBKP level; RHF/SBKP energies at these points are also plotted (see Figures 8a and 

b). As point group symmetry was constrained to be C2h the paths shown are not necessarily 

the minimum energy paths; nonetheless, they establish that the dimerization of TiF4 and TiCU 

are barrierless processes. 

LCD analysis. In order to demonstrate the validity of our argument that the energetics 

of the process of dimerization ̂  governed by a continuous competition between endothermic 
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monomer distortion and exothermic monomer interaction, we have carried out an energy 

decomposition. The LCD analysis has proved a useful tool in understanding intermolecular 

interactions.30 It decomposes the total energy of the system into potential and kinetic energies 

of LMOs and the interactions between them. We have carried out the analysis at the IIHF level 

at points on the energy paths plotted in Figures 8a and b. 

The analysis requires that a local nuclear charge distribution is assigned to each LMO. 

For semi-core LMOs, Ti was assigned a nuclear charge of 2: for the Ti-X bond LMOs Ti and 

X were each assigned a nuclear charge of 1; and for the X lone-pair LMOs, X was assigned a 

nuclear charge of 2. Note that these assignments were defined in the separated monomers and 

were applied consistently as the monomers approached each other. The LCD analysis allows us 

to determine the total internal energies of the monomers and the total interaction energy between 

them along the reaction path. This is done by simmiing the relevant individual LMO 

contributions.The resulting plots are shown in Figures 9 and 10. 

In these plots the bold curve is the total energy and is the sum of the remaining two 

curves which are the total internal energy of the monomers (AE(2TiX4)) and the total 

interaction energy of the monomers (AE(TiX4(l)ITiX4(2))). Clearly one can make a general 

observation that the internal energy goes up and the interaction energy goes down during these 

dimerization processes and the total energy along the path is the result of the competition 

between these two effects. In the fluoride system (Figure 9) at the RHF/SBKP level of theory 

the dimerization process is barrierless and the resulting dimer is exothermic by 8 kcal/mol 

relative to separated monomers. In this case the favorable monomer interaction dominates the 

unfavorable structural deformations. In the chloride system (Figure 10) at the RHF/SBKP level 

of theory the total energy remains the same as that of the separated monomers (MP2 is required 

to observe the weakly bound minimum - see Figure 8b) until a Ti-Ti separation of less than 6 A 

then the total energy relative to the monomers increases rapidly as the transition state Ti-Ti 

separation is approached. So, in this case the interaction and structural deformation effects 
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cancel each other out until a Ti-Ti separation of - 6 A and then the endothemiic structural 

deformation effects begin to dominate. This is suggestive of steric effects. 

We intend to cany out a more detailed LCD analysis of these two systems in order to 

explain their radically different behaviors. 

IV. Conclusions 

The titanium tetrahalides TiXo. (X = F, Q, Br) ate all found to have attractive 

intermolecular interactions. TiF4 possesses the largest attractive interaction, forming a bound 

dimer. Smaller interactions were found for TiCU and TiBr4; in these cases only weakly 

interacting Van der Waals dimers are predicted. This is consistent with known experimental 

data which suggests that solid state TiF4 is a bridged polymer chain, and solid state TiCU and 

TiBr4 remain molecular in structure. The predicted interactions are also consistent with the non­

monotonic behavior of the titanium tetrahalide melting points. 

Transition states with symmetrically equivalent bridging halides were found. These 

represent possible routes to halide exchange between monomers. Such a mechanism readily 

explains the unexpected results of NMR experiments on TiCLj. 

Dynamic correlation, introduced through MP2, was found to be very important for 

energetics for all the dimer structures studied. It was found to be less important for determining 

structures of the fluoride minimum and transition state, and the chloride and bromide transition 

states. However, inclusion of dynamic correlation was found to be essential for geometry 

optimizations of the chloride and bromide minima. Higher order correlation effects introduced 

through CCSD(T) were found to have little effect. 

The effective core potential basis set SBKP was found to overestimate the dimerization 
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energy of TiF4, with an exothermic dimerization energy of 14.3 kcal/mol compared to 9.6 

kcal/mol predicted by the all election basis set TZVP. SBKP was found to be a reliable basis 

set for TiCLj, agreeing well with the all electron result (5.2 kcal/mol compared to 4.5 

kcal/mol). It is concluded that SBKP is also a reliable basis for TiBr4. 
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Table 1. The melting and boiling points of the titanium tetrahalides.^ 

Melting Poini/°C Boiling Point/°C 

TiF4 - 284.0 

TiCU -24.0 136.4 

TiBr4 39.0 233.0 

Til4 150.0 377.0 

« References. 
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Table 2. Calculated and experimental Ti-X bond lengths in Angstroms for the tetrahedral 
TiX4 molecules (X = F, CI, Br). 

RHF/SBKP 
/A 

MP2/SBBa> 
/A 

Experiment^ 
/A 

TiF4 1.746 1.765 1.754 

TiCU 2.183 2.171 2.170 

TiBr4 2.337 2.328 2.339 

« Reference 27. 
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Table 3. a) Total energies (in Hartrees) of TiX4 (X = F, CI, Br) calculated using the SBKP 
basis set. b) Total energies (in Hartrees) of TiX4 (X = F, CI, Br) calculated using the all 
electron basis sets TZVP and TZVP(g). 

a) 

SBKP 

RHFa MP2fl CCSD(T)^ 

TiF4 -153.19990 -154.20671 -154.23138 

TiCU -116.45762 -117.33226 -117.39495 

TiBr4 -110.29105 -111.14418 -111.18487 

Geometry optimized at this level of theory. Single-point energy calculated at the 
MP2/SBKP geometry. 

b) 

MP2 

TZVpfl TZVP(g)« 

TiF4 -1247.93521 -1247.96689 

TiCU -2687.76258 -2687.79513 

a Single-point energy calculated at the MP2/SBKP geometry. 
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Table 4. a) Calculated energies (in kcal/mol) of Ti2X8 relative to TiX4 (X = F,C13r) and 
MP2 zero-i»int energy corrections all using the SBKP basis set b) Calculated MP2 single 
point energies (in kc^mol) of TiaXg relative to TiX4 (X = F,C13r) with the all electron basis 
sets TZVP and TZVP(g). 

a) 

SBKP 

RHF" MP2fl Z.P.E. CCSD(T)'' 

Ti2F8 min -8-6 - 14.3 + 1.1 - 16.8 

Ti2F8 T.S. -6.1 - 12.4 + 1.0 

Ti2Cl8 min -0.3 - 5.2 + 0.3 - 4.6 

Ti2Cl8 T-S. + 23.5 + 5.2 + 0.6 

Ti2Br8 min -0.1 - 6.4 + 0.2 

Ti2Br8 T.S. + 21.5 + 6.6 + 0.3 

o Geometry optimized at this level of theory. ^ Single-point energy calculated at the 
MP2/SBKP geometry. 

b) 

MP2 

TZVPa TZVP(g)a 

Ti2F8 min - 9.6 - 10.5 

TiiFg T.S. - 7.6 - 8.7 

TijClg min - 4.5 

TiiCIg T.S. + 5.0 

a Single-point energy calculated at the MP2/SBKP geometry. 
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TijFg Ti-Tl 331 A 
(3^ A) 

115:1° 
(U3J°) 

1.74 
(1.76 A>̂  

2.13 A 
(203 A) t.89 A 

(1 Ji A) 

110.5° 
(10&5°) 101.9° 

(101J°) 

69 J° 
(71.5°) 

Minimum 

TijCIs Ti-Ti 6.34 A 
(4.73 A) 

108.5° 
(1«7J°) 

1.73 A 
(1.75 A) 

Ti-Ti 3.29 A 
(3J8A) 

1.75 A 

(70.8°) 

Transition State 67.0 / cm"^ 

Tt-Ti 3.95 A 
(3.83 A) 

2.18 A 
(2a7A) 

5.12 A 
(̂4.51 Ai, 8 A 

67.0° 
(97.8°) 

ll3.0°\(2a7A) 

109.5° 
(109.7°) 

109.4° 
(109J°) 

106.1 
(i04.r) 

ZI7A 
(2J6A) 

2JOA 

(102.9°) 
(97.4°) 

viy 75J° 
(77.1°) 

Minimum Transition State 30.9 / cm' 

Ti2Brg n-ri 6.78A 

(4i>5A) 
Ti-Ti 4.15 A 

(4.07 A) 

2J4A 
(2J3A) 

(4.70 A 
2.64A 
(ifioA) 

2J4 A 
89.0^\(2J3A) 
(82a°) 

(2J5A) 105.9° 

103.3 
(102J°) 109J 

(1093°) 
91.0 
(97J°) (2J2A) 109.4° 

(1093°) 76.7° 
(77.1°) 

96.6' 
'(98.0°) 

Minimum Transition State 19.5 i cm -I 

Figure 1. RHF and MP2/SBKP optimized structures for minima and transition 
states on the potential energy surface of Ti2X8 (X = F, CI, Br). MP2 geometries are 
given in parentheses. 
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ri-Ti 3.12 A 
(3.01 A) 

1.67 A 
(1.69 A) 

108.4° 
(111.1°) 1.89 A 

(1.82 A) 

111.4' 
(111.6" 

1.70 
(1.71 

68.6° 
(68.4°) 

RHF/SBKP(opt) MP2/SBKP(opt) 

-23.7 -40.1 

Figure 2. Calculated energies (in kcal/mol) of C^, Ti2H8 relative to 2TiH4. 
(opt) indicates that the geometry has been optimized at that level of theory. 



www.manaraa.com

2TiFj 2TiF4 

67.0 / cm 

(2.0) \ 

30.9 i cm 

iy / 10.4 
' (9.5) 

I0.4\ 
(9.5) •. 

5.0 
(4.5) 

Figure 3. Possible mechanisms for halide exchange in T2iF4 and 2TiCl4. Energies are in kcal/mol.MP2/SBKP 
energies (optimized structures) are in normal typface; MP2/TZVP single point energies are in bold. Circles indicate 
halides which are exchanged. 
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Mulliken Populations 
Ti 0.25 
F i.7f 

TiF4 Ti-F <T bond 

Mulliken Populations 
Ti 0.55 

TiCId Ti-Gla bond 

Mulliken Populations 
Ti 0.06 

TiF4 F lone-pair 

Mulliken Populations 
Ti 0.11 
a 1.90 

TiCl4 CI lone-pair 

Mulliken Populations 
Ti 0.62 
Br 139 

TiBr4 Ti-Br a bond 

Mulliken Populations 

TiBr4 Br lone-pair 

Figure 4. LMO plots of Ti-X a-bonds and X lone-pairs in TiX4 (X=F3r,Q). 
The contonr increments are 0.05 Bohr'^. 
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Mulliken Populations 
Ti 0.27 
F 1.73 . 

\ .  

Ti2F8 Ti-terminal F <T bond 

Mulliken Populations 
Ti 0.13 
F 1.87 

TiiFg Ti-F bridging bond 

Mulliken Populations 
Ti 0.08 
F 1.93 

\ 

TiiFg terminal F lone-pair 

Mulliken Populations 
ri 0.01 
Ti 0.01 
F 1.97 

Ti2F8 bridging F lone-pair 

b) Mulliken Populations 
Ti 0.09 
F 1.91 

TnFg Ti-F long bridging bond 

Mulliken Populations 
ri 0.17 

Ti2Fg Ti-F short bridging bond 

Figure 5. a) LMO plots of a Ti-F (T-bond, F lone-pairs, and a Ti-F bridging bond 

in the Ti2Fg transition state, b) LMO plots of Ti-F bridging bonds in the Ti2F8 minimum 
The contour increments are 0.05 Bohr^^. 



www.manaraa.com

166 

Muiliken Populations 
Ti 0.60 
a 1.40 

• -

\ 
\, • 

TiiClg Ti-tenninal CI (T bond 

Muiliken Populations 
li 0.40 
a 1.66 

Ti2Cl8 Ti-Cl bridging bond 

Muiliken Populations 
Ti 0.12 
a 1.89 

\ 

Ti2Cl4 terminal CI lone-pair 

Muiliken Populations 
Ti 0.02 

Ti2Cl8 bridging CI lone-pair 

Figure 6. LMO plots of a Ti-Cl o-bond, CI lone-pairs, and a Ti-Cl bridging bond 
in the Ti2Cl8 transition state. The contour increments are 0.05 Bohr^'^. 
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Mulliken Populations 
Ti 0-70 
Br 1.30 

' \  

Ti2Br8 Ti-terminal Br a bonid 

Mulliken Populations 
Ti 0.48 
Br 1.59 

Ti2Br8 Ti-Br bridging bond 

Mulliken Populations 
Ti 0.10 
Br 1.91 

Ti2Br8 terminal Br lone-pair 

Mulliken Populations 
Ti 0.03 ' 
Ti 0.03 , 
Br 1.96 : ! , , 

Ti2Br8 bridging Br lone-pair 

Figure 7. LMO plots of a Ti-Br a-bond, Br lone-pairs, and a Ti-Br bridging bond 
in the Ti2Br8 transition state. The contour increments are 0.05 Bohr''^. 
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Figure 8. Plots of (a) Ti2F8 energy and (b) Ti^Clg energy (kcal/mol) relative to 2TiF4 
and 2TiCl4, respectively, versus Ti-Ti separation. The plots labled MP2/SBKP are of 
energies from MP2/SBKP constrained optimizations; the plots labled RHF/SBKP are c 
RHF/SBKP single point energies at MP2/SBKP constrained geometries. 
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AE(TiF4(l)ITiF4(2)) 
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Figure 9. Plot of the change in total energy (bold curve labled AE, right y-axis) and 
plots of internal AE(2TiF4) and interaction AE(TiF4(l) I TiF4(2)) energies (left y-axis). 
Energies are relative to those at a Ti-Ti separation of 8 A. 
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Figure 10. Plot of the change in total RHF energy (bold curve labled AE) and plots 
of internal AE(2TiCl4) and interaction AE(TiCl4(I) I TiCl4(2)) energies. Energies are 
relative to those at a Ti-Ti separation of 10 A. 
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CHAPTER?. POLARIZATION IN THE EFFECTIVE FRAGMENT 

METHOD FOR MODELING SOLVATION EFFECTS 

A paper to be submitted to the Journal of Chemical Physics 

Simon P. Webb and Mark S. Gordon 

Abstract 

The effective fragment method models solvent effects accurately and cheaply by 

treating the solute fully ab initio and introducing the effects of solvent molecules through 

potentials added directiy to the ab initio one-electron Hamiltonian. One of these potentials 

allows for the polarization of the solvent by the ab initio solute. As the solvent can repolarize 

the solute the effects of polarization must be treated in a self-consistent manner. This was 

originally achieved by convergence of the ab initio wavefimction, polarization of solvent, 

introducing the effects of the polarized solvent into the ab initio Hamiltonian, reconverging 

the wavefiinction, and so on until self-consistency. A method is presented where the effects 

of polarization are added at each SCF iteration, thereby simultaneously converging 

polarization effects and the ab initio wavefunction. This results in a time saving of a factor of 

two over the original method. The solvent molecules are polarized via bond and lone pair 

localized orbital dipole polarizability tensors. Originally these were calculated numerically. 

An analytic method for their calculation is presented. 

I. Introduction 

The effective fragment methodhas been developed to accurately and cheaply 

model the effects of discrete solvent molecules on a solute which is treated with ab initio 

quantum mechanics. The effects of the solvent molecules are introduced by adding 
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perturbative one-electron terms to the ab initio Hamiltonian of the solute, producing an 

effective Hamiltonian for the solvated system. Presently these one-electron terms account for 

the effects found at the Hartree-Fock level of theory; which are: electrostatic, polarization, 

and exchange repulsion. 

The dominant electrostatic term is represented by distributed multipoles which are 

determined from a distributed multipole analysis  ̂of the wavefunction from a single ab initio 

calculation on the solvent molecule. The effects of the polarization of solvent molecules by 

the solute and the resulting induced dipoles, which act back on the solute, are treated in a 

self-consistent manner and are introduced via bond and lone pair localized orbital dipole 

polarizabiltity tensors."^ The exchange repulsion term is determined by a fitting procedure for 

each particular solvent molecule^ and also includes charge-transfer effects. Ongoing 

extensions of the model include replacement of the fitted exchange potential with a 

generalized exchange potential term, which will remove the need for any fitting and will 

apply to any solvent molecule,^ and the addition of a term to represent dispersion effects.^ 

Originally the polarization term, mentioned above, was calculated by converging the 

self-consistent field (SCF) wavefunction, polarizing the solvent fragment(s), allowing the 

polarized solvent to act back on the solute, reconverging the SCF wavefunction and so on, 

until overall self-consistency. This is, of course, costly as convergence of the SCF ab initio 

wavefimction has to be achieved many times. In this paper we will present a method which 

adds the polarization effects at each SCF iteration, thereby converging the SCF wavefimction 

and the polarization effects simultaneously. This method will be shown to achieve overall 

self-consistency in the same number of iterations needed for an unpolarized SCF calculation, 

and reduce the number of iterations needed for self-consistency in the polarized system by 

half compared to the old method. 

Localized orbital dipole polarizabilities used to allow polarization of the solvent may 

be calculated numerically by a finite-field difference method.'* In this paper we present a 
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derivation of an analytic expression for localized orbital dipole polarizabilities., which is 

based on the earlier work of Moccia et al.^ The analytic calculation of these localized 

polarizability tensors has several advantages over the numeric calculation. 

(II) Theory and Methods 

a) The Effective Fragment Method. As outlined above, the effective fragment 

model treats discrete solvent molecules by introducing one-electron terms into the ab initio 

Hamiltonian (equation (1)). The part of the system which is treated ab initio is referred to as 

the action region (AR). This is the region where chemistry occurs and may be simply the 

solute, or the solute plus some number of solvent molecules if, for example, proton transfer 

between solvent and solute is occurring. Alternatively it could be the active site of an 

enzyme. The solvent molecules represented by effective fragments, then, are spectator 

molecules which perturb the active region; 

V represents the potential due to the solvent molecules (or fragments). In the present Hartree-

Fock (HF) implementation of the method there are three terms in V: electrostatic, 

polarization, and exchange repulsion/charge transfer. The effective fragment interaction 

Hamiltonian describing the interaction between the nth solvent molecule and an AR electron 

is then^ 

H = H ^ + V  (1) 

K i M  = X V°"(«,^) + X +1; C(n, j), (2) 
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where s represents the electronic coordinates, k is the number of multipolar expansion points, 

L is the number of valence localized orbitals, and M is the number of terms in the repulsive 

potential. Interactions between solvent molecules and AR nuclei, and also solvent-solvent 

interactions are described by similar terms. In this paper we are concerned with the second 

term in equation (2) which accounts for the effects of polarization. 

b) Calculation of Polarization Energy Polarization of the solvent fragments is 

described by a perturbation model which employs bond and lone pair localized orbital dipole 

polarizabilities 

The elements of these tensors ot^^may be obtained from finite-field perturbed Hartree-Fock 

calculations on the isolated solvent molecule (see section H c), and are centered at the 

centroids of charge of the solvent's L localized valence orbitals. The result, for example, in 

water is four polarizable points: one on each O-H bond and one on each oxygen lone-pair. 

Dipoles which are induced at these polarizable points are assumed to be a linear fimction of 

the applied field; 

The energy of polarization Epulis the sum of two terms; the energy due to interaction 

of the induced dipoles on the solvent molecules with the field and the energy required to 

induce dipoles in the solvent molecule The specific expression forE^^, determines the 

variational operator whose general form is shown in equation (3). To demonstrate the origin 

of the factor of 1/2 in equation (3) we show the single fragment case where is simply: 

(3) 

(4) 
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-I A • r • r 
i ^ i 

= ~S(a,r ) (5) 

Here^"' is the total field felt at polarizable point i on the single firagment, due to the ab initio 

AR wavefimction. This field contains an electronic contribution and a nuclear contribution: 

The derivation for the multiple fi^gment case is complicated:^ therefore, for the 

purposes of this paper we include only the final result. For the multi-fragment case and 

the expression used in the variational operator included in the quantum mechanical self-

consistent calculations is given by: 

is the total field felt at polarizable point i: is the field felt at polarizable point i due to 

induced dipoles on other fragments. We now discuss the origin of these fields. 

A schematic of the problem for an ab initio solute + two firagment case is shown in 

Figure 1. Consider the polarizable point /= 1 located on fiagment 1 in Figure 1. It feels a total 

field F(°' given by: 

(6) 

(7) 

(8) 
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where F" is the field due to the ab initio AR wavefunction felt at polarizable point L 

the static Held, due to the distributed multipole expansion on fragment 2, felt at polarizable 

point 1, aadF^ is the field due to the induced dipole at polarizable point 2 felt at polarizable 

point 1. This fieldinduces a dipole /i, at the polarizable point 1. 

(9) 

Sunultaneously, an exacdy analogous process occurs at polarizable point 2. 

Pr = + (10) 

(11) 

These induced dipoles/2, andwhich themselves are interdependent and must be made self 

consistent, act back on the ab initio wavefimction through the operator given by equation (3). 

The newly perturbed wavefunction produces a new field which then acts back on the 

fragment polarizable points. The induced dipoles, then, must be made self-consistent with the 

AR ab initio field as well as with each other. 

Methods to achieve self-consistency. The scheme to achieve self-consistency in the 

original EFP implementation is represented by the flow chart in Figure 2. The procedure 

starts with a complete SCF calculation (step 1), where the one-electron EFP terms describing 

electrostatic effects and exchange repulsion/charge transfer are included and polarization is 

not. The wavefunction is fiilly converged and the resulting electron density (step 2) is then 

used to calculate the fields^™due to the AR (step 3). The static fields due to the 

EFPs ^^'^''are added (step 4) and the total fields induce dipoles ju,.at the fragment polarizable 

points (step 5). These induced dipoles are then iterated to self-consistency among the 

fragment polarizable points (steps 6-8). The resulting fields and induced dipoles are then used 
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to calculate the perturbation operator (equation (3)), and it is added to the one-electron 

Hamiltonian (step 9). The SCF is then reconverged (steps 1-2) and the whole process is 

repeated until self-consistency is achieved, indicated by constant (within a prescribed 

tolerance) electron density and induced dipoles between macro-iterations of the SCF 

wavefiinction. This procedure is costly as the number of SCF cycles required is very large. 

Figure 3 shows a flow chart representing the first altemative method - method 2. 

Here, on the first cycle the initial guess electron density is used to calculate the fields^"'due 

to the AR (step 2). The static EFP fields are added (step 3a) and dipoles /i, are induced 

at the polarizable points (step 4). Note that on the first SCF cycle is zero. As in the first 

method, ±e induced dipoles are micro-iterated to self-consistency (step 5-7). Then the effect 

of the converged induced dipoles are added through the perturbation operator (step 8), and 

the next SCF cycle is started. In this scheme the converged fields due to induced dipoles 

are saved from each SCF iteration and are added as an initial guess in the next iteration (step 

3b). This procedure provides a better guess at the converged^" on each successive SCF 

iteration and therefore results in fewer micro-iterations on the induced dipoles. The whole 

procedure is repeated until the wavefunction converges indicating overall self-consistency. 

This procedure, then, adds the polarization effect into each SCF iteration, thereby converging 

the density and the induced dipoles simultaneously. 

Figure 4 shows a flow chart representing method 3 which contains a ftirther 

refinement to method 2. Initially method 3 proceeds as in method 2 (steps 1-3). Again, on the 

first cycle the total field which produces the induced dipoles (step 4) has only contributions 

from F^ and F^^. No micro-iterations are carried out on the induced dipoles, and the field 

due to induced dipole is saved (step 5). The effect of the induced dipoles is then introduced 

into the AR ab initio wavefunction (step 6). On the next SCF cycle, the fields due to the 

induced dipoles saved from the previous iteration are added to the new F"' and^^'''', and 

new induced dipoles calculated. This process is repeated until the wavefunction converges 
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indicating overall self-consistency. In this method the induced dipoie iterations amongst the 

fragments are also folded into the SCF iterations. 

All three methods were tested on a water trimer system where one water was treated 

ab initio and the other two waters were replaced by effective firagments. Figure 5 represents 

the number and type of iterations (SCF or dipole/fleld) and their nesting for methods 1 to 3. 

Table I shows the totals for each type of iteration, and also the final energy at convergence. 

Consider method 1 in Figure 5; the number of SCF iterations required for 

convergence in an unpolarized environment is 10. The induced dipoles/field require 4 micro-

iterations for self consistency. The perturbation to the one-electron Hamiltonian resulting 

from the converged induced dipoie requires 6 more SCF iterations for wavefuction 

convergence. This process continues and Table I shows that a total of 19 SCF cycles and 12 

dipole/field micro-iterations are required for complete self-consistency. 

For method 2 (see Figure 5b) after the initial guess 4 induced dipole/field micro-

iterations are required; the resulting perturbation is added to the one-electron Hamiltonian 

and an SCF cycle is completed. On the next cycle only 3 induced dipole/field micro-

iterations are required, and on the next only 2. This demonstrates the value of saving the 

previous induced dipoie as an initial guess for the next SCF iteration. By the fourth SCF 

iteration the induced dipoie is no longer changing, indicating that it converges faster than the 

electron density. Table 1 shows that total self-consistency is achieved in 10 SCF cycles and 

17 induced dipole/field micro-iterations. As the induced dipole/field micro-iterations are 

extremely inexpensive compared to the SCF iterations, this represents a time saving of just 

under a factor of two compared to method 1. 

Figure 5c demonstrates the simultaneous convergence of the induced dipole/field and 

the AR density. It requires (see Table 1) 10 induced dipole/field and SCF iterations for 

complete convergence. This method is clearly cheaper than method 2; however, numerical 
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stability with larger numbers of fragments needs to investigated. For this reason method 2 is 

the method of choice as it is guaranteed to converge. 

The final energies obtained for all three methods are the same (see Table 1). so at 

convergence ail three methods are equivalent 

d) Localized Polarizability Tensors. As previously stated, the bond and lone pair 

localized orbital dipole polarizabilitiesa^required for the above procedure may be obtained 

from numeric finite-field perturbed Hartree-Fock calculations on the isolated solvent 

molecule.2' ^ In this subsection we present an alternative analytic method for calculating : 

but, first we briefly outline finite-field method. 

Numerical calculation of a'̂ g. Stevens and Garmer developed the numerical method"* 

used to calculate a^in the original implementation of the EPF method,- where the superscript 

I refers to the localized orbital (LMO)^,. The method entails numerically taking the 

derivative of each localized orbital dipole with respect to an applied field Fgi 

where 01 and are perturbed and unperturbed LMOs, respectively. 

This finite field method requires four SCF calculations; one with no external field 

and ±e remaining three with fields in x, y, and z directions, respectively. With the correct 

choice of field strengths and wavefunction convergence tolerances, accuracy of 10"^ Bohr^ 

can be achieved.'* For generation of EF potentials for many different solvents^ an automated 

g g 

(12) 

(13) 
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procedure is obviously highly desirable, as manual application of equation (13) for a 

molecule containing more than a few LMOs is clearly very tedious. Stevens et al report the 

development of a driver for automation; however, they also repon problems such as 

alignment of perturbed LMOs with their corresponding unperturbed LMOs because of 

inconsistent ordering. We have therefore derived and implemented an analytic method of 

calculating ajr^based on the earlier work of Maestro and Moccia® which generates 

all d'tensors for a given molecule in a single calculation. 

Analytic calculation of a'̂ . The derivation of the analytic expression for elements of 

the total RHF polarizability tensord is as follows; where £efec is the electronic energy, F and 

G are components of the electric field along the/and g axes, andis the component of the 

electronic dipole in the /direction:'0 

(15) 

(14) 

J.o. all 

(16) 
t m 

(17) 

(18) 

(19) 
' J 

vin d.o. 
>1 

(20) 
y 

The upper limits on the summations indicate sums over virtual (virt), all (all) and doubly 

occupied (d.o.) orbitals. The solution of the coupled perturbed Hartree-Fock (CPHF) 
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equations is required to give the orbital responses Ufj to a perturbing field G,where i and j 

are canonical MO indices. The matrix elements h(j are dipole integrals ;/and g are 

Cartesian coordinate axes along which the perturbing fields lie. 

We wish to decompose the total orpolarizability tensor into localized orbital 

contributions; that is, contributions from lone pairs and bonds. By means of a unitary 

transformation one may transform canonical orbitals to localized orbitals yr': 

(21) 

where T is determined during the course of an orbital localization procedure.' Similarly, 

one may transform equation (15) into a localized basis. 

dG dG dG 

d.o. d.o. 

d.o. d.o. 

I t 

ISwi 
L j * 

> t 
J* 

dG dG dG 

(22) 

(23) 

Equation (23) shows that the analytic expression for localized dipole polarizabilities consists 

of two terms. The second term allows the localization to "relax" in the presence of the 

electric field; that is, the response of each localized dipole the field is coupled to the 

response of every other localized dipole . The first term in equation (23), then, represents 

the decoupled localized dipole polarizabilties. Stevens and Garmer decoupled the localized 

orbital polarizability tensors d' in their numeric method by zeroing off-diagonal Fock matrix 

elements during the SCF cycles for all localized orbitals except the one which they were 

calculating a'. They found that the uncoupled polarizabilities were less anisotropic, with the 

elements of a' perpendicular to the bond (z) axis (anda'^.), for <T-bond LMOs, in closer 

agreement with each other. They also found that the decoupled localized orbital 
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polarizabilities are more transferable from molecule to molecule. The localized orbital 

polarizability tensors used in the EFP analytic gradient derivations are assumed to be 

symmetric. In fact these tensors are sjnnmetrized before use. Since we find that decoupled 

localized orbital polarizability tensors are generally more symmetric than coupled ones (see 

results), decoupled localized polarizability tensors are the logical choice in the EFP 

implementation. Therefore, for the remainder of this paper the second term in equation (23) 

not considered further. 

One may arrive at a final analytic expression (equation (26)) for the Ith decoupled 

localized orbital polarizability by applying the steps in the total a derivation (equations (15) 

(20) to the first term in equation (23). 

J t 
d.o. alt 

= (25) 
jk 

d.o. ail 

= (26) 
Ji ' 

d.o. vin d.o. 

jk i jki 

d.o. vtn 

= (28) 
jt i 

Equation (28) can be written in terms of transformed orbital responses and dipole 

integrals A,(: 

d.o. 

(29) 
s 

£.0. 
K=^^(kTik (30) 

k 
vriT 

(31) 
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The result is L a' tensors where L is the number of localized orbitals. The decomposition 

represented by equation (31) should recover the total dipole polarizability d if all occupied 

orbitals are localized and their contributions are summed. The following proof demonstrates 

that this is the case: 

vin d.o. vin d.o. ( d.o. \(d.o. \ 

i I ' I \ J J\ t 

(32) 

vin d.o. 

' 

d.o. d.o. 

• 

M
 

M
 

s ik (33) 
' J k 

1 1 
vin d.o. 

(34) 
' J 

Often, when canonical orbitals are localized the chemical core orbitals are excluded 

from the localization scheme. The reason for this is that the core orbitals do not usually 

participate directly in the chemical activity of the molecule in question. The scheme for 

calculating analytically localized dipole polarizability tensors out lined above may easily be 

modified to accommodate this procedure. 

The total core polarizability tensor a" may be calculated using equation (20), but 

limiting the second summation to just the core MOs. 

vin core 

I (35) 
' i 

The localized orbital polarizability tensors for the valence orbitals may be calculated by 

applying the sums in equations (29) and (30) to the number of localized orbitals L only and 

then applying equation (31) as before. 
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Application to CH4 and HjO. The analytic method to calculate localized orbital 

dipole polarizabilities has been implemented in the electronic structure package GAMESS^^ 

for RHF and ROHF high spin wavefimctions, and for both the Boys localization scheme, ̂ ' 

and the Edmiston-Ruednberg energy localization procedure. 

The first test case considered is that of methane. In the standard orientation of CH4 

(see Figure 6) an applied field in, for example, the x direction will effect the x components of 

all four LMO dipoles equally. The same is true for applied fields in the y and z directions and 

their effects on y and z dipoles, respectively. Consequently, when/=g the applied field will 

have no effect on the localization transformation matrix T and therefore the coupling term in 

equation (23) will be zero for the diagonal elements of each localized orbital polarizability 

tensorFor CH4 in the standard orientation, then, the approximate analytic method, 

arrived at by neglecting the second term in equation (23), and the numeric method should 

agree for diagonal elements a'g.. Figures 6 and 7 show this to be the case with agreement to 

the third decimal place in the analytic and numeric calculation of for CH4 . It is clear that 

when the dipole component and the applied field do not lie in the same direction, the 

coupling term in equation (23) is no longer zero, and the off diagonal elements calculated by 

the two methods do not agree. The analytic method predicts larger off diagonal elements than 

the numeric method. The analytic core polarizability tensors are presented in Figures 6 and 7 

to demonstrate the inertness of the cores to a polarizing field. Basis set effects can be seen by 

comparison of Figures 6 and 7. The larger more flexible basis set results in larger diagonal 

elements (and therefore a larger mean), but smaller off diagonal elements. 

Figures 8 and 9 show the results of the application of the numeric and analytic 

methods to water. There are two pairs of equivalent LMOs in H2O; two oxygen lone-pairs 

and two O-H bonds, so, only two tensors are presented in each water calculation. 

The analytic core polarizability tensor is again presented to demonstrate how 
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unpolarizable the core orbitals are. Individual elements of the oxygen lone-pair tensors and 

O-H bond tensors clearly show an effect associated with the decoupling in the analytic 

scheme. There is a higher degree of symmetry in the anal3mc O-H bond LMO polarizability 

than in the numeric counterpart; that is, the elements xz and zx agree more closely in the 

analytic calculation than in the numeric calculation. The analytic and numeric lone-pair 

tensors have comparable small asjonmetries; but, the analytic tensors have considerably 

larger off-diagonal elements. Inspection of Figure 8 shows that for the TZV(p,d) basis set the 

mean analytic and numeric localized polarizabilities are similar but are not identical. When 

the size of the basis set is increased to TZV(3d,3p) (see Figure 9), the two methods are 

essentially in agreement. This suggests that the added flexibility of the larger basis set 

accounts for the approximation made when discarding the coupling term in equation (18) to 

the extent that the trace is exactly correct, but the redistribution amongst the diagonal terms 

due to decoupling remains. 

Stevens and Garmer carried out a survey of a number of molecules and examined the 

transferability of the localized orbital polarizabilities of certain bonds.'^ In order to do this 

the bond polarizabilities had to be calculated with the bond direction the same in each case. 

The anal3rtic bond polarizability tensors calculated above may be rotated by a unitary 

transformation in order to project bond directions and lone-pairs onto the z-axis. This 

facilitates studies such as that by Stevens and Garmer. 

Figure 10 shows localized orbital polarizability tensors for CH4, where the C-H bond 

tensor has been rotated so as to project the bond direction onto the z-axis. For both TZV(p,d) 

and TZV(3d,3p) the zz element is largest indicating the C-H bond is most easily polarized 

along the bond axis. The xx and yy elements are exactly equal which is indicative of the high 

symmetry of CH4. There is clearly a large basis set effect with a significant increase in the 

mean polarizability on going from TZV(p,d) to TZV(3d,3p). Interestingly, most of this 

increase is due to the larger elements perpendicular to the bond axis (xx and yy). This 
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indicates that the smaller basis set provides an adequate description of the polarizability 

along the bond, as the same basis fimctions that describe the bond (TZV valence) can 

effectively describe distortion of electron density along the bond axis (in the direction of 

overlap). However, distortion of electron density in directions perpendicular to the bond axis 

clearly will not be described well by the TZV valence basis functions and requires more 

flexibility. 

(m) Conclusions 

The effects of polarization when added to the EFP method need to be made self-

consistent. Self consistency may be achieved by adding the polarization effects each SCF 

iteration instead of after every converged SCF calculation of the wavefunction. This 

technique, which amounts to simultaneously converging the orbitals and the induced dipoles 

in the whole system, is therefore able to reduce the number of SCF iterations required for 

complete self-consistency by half. 

Localized dipole polarizability tensors centered at the centroids of charge of the 

solvent (fragment) LMOs are used to introduce polarization into the EFP method. These may 

be calculated by a numeric finite-field method. However, this method is not easily automated 

and quickly becomes cumbersome as the number of LMOs in the solvent increases. We have 

presented an analytic expression for the calculation of these tensors. The expression used 

decouples each localized orbital polarizability tensor from the others. In the equivalent 

numeric calculation where elements of the Fock matrix were zeroed out, this was found to 

improve transferability amongst different molecules. We plan to utilize the superior 

transferability of the decoupled tensors in a future study which will survey analytic localized 

polarizabilities for a large sample of compounds. We have found that for H2O it also 
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increases the symmetry of the tensors. This is advantageous for the EFP method where the 

tensors are required to be symmetric in the derivation of analytic energy gradients with 

respect to nuclear displacements. 
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Table 1. Total number of each type of iteration needed for total self-consistency in the water 

trimer system (one ab initio water; two fragment waters), and the final energies in Hartrees at 

convergence. 

Method 1 Method 2 Method 3 

Total #SCF Iterations 19 10 10 

Total # Diple/Reld 

Iterations 

Final Energy/Hartree -75.94711015 -75.94711016 -75.94711016 
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Figure 1. A schematic of the self-consistency problem for an ab initio 
solute and two fragment solvent molecules. 
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Figure 2. Flow chart of the original method to reach polarized self-consistency in 

EFP method. 

P = electron density; F = Fock matrix; = perturbation due to polarization; 

D- = field integrals at i; F°' = ab initio field felt at /; = static field felt at i 

due to other fiagment(s); F""'^ = field due to nuclei; Jif = induced dipole at i; 

F/^ = field at i due to induced dipoles on other fragment(s). 
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Figure 3. Flow chart of method 2 to reach polarized self-consistency in the EFP 

method. 

P = electron density; F = Fock matrix; = perturbation due to polarization; 

bj — field integrals at i; F" = ab initio field felt at i; = static field felt at i 

due to other firagment(s); F/^" = field due to nuclei; = induced dipole at /; 

F/' = field at i due to induced dipoles on other fragment(s). 
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Figure 4. How chart of method 3 to reach polarized self-consistency in the EFP 

method. 

P = electron density; F = Fock matrix; = perturbation due to polarization; 

D, = field integrals at i\ F" = ab initio field felt at /; = static field felt at i 

due to other &agment(s); F"'"' - field due to nuclei; /i, = induced dipole at i; 

F/' = field at i due to induced dipoles on other fragment(s). 
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Figure 5. Nesting of SCF and induced dipole/field cycles in the water trimer test case (I ah initio water; 2 EFP waters) 
for methods I to 3. The diagrams represent complete convergence in each case. 
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Basis Set: TZV(p,d) 

analytic core poiarizability tensor 

X Y Z 

X 0.00491 0.00000 0.00000 
Y 0.00000 0.00491 0.00000 
Z 0.00000 0.00000 0.00491 

mean a = 0.00491 

analytic numeric 

C-H bond 

X Y Z X Y 
X 3.36162 1.73790 1.73790 X 3.36107 1.43351 
Y 1.73790 3.36162 1.73790 Y 1.43351 3.36107 
Z 1.73790 1.73970 3.36162 Z 1.43351 1.43351 

1.43351 
1.43351 
3.36107 

mean a = 3.36162 mean a = 3.36107 

Figure 6. Localized dipole poiarizability tensors calculated analytically and 

numerically for QH4 in Bohrs^ using a TZV(d,p) basis set. The mean is the 

trace/3. 
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Basis Set: TZV(3p,3cl) 

analytic core polarizability tensor 

X Y z 

X 0.00452 0.00000 0.00000 
Y 0.00000 0.00452 0.00000 
Z 0.00000 0.00000 0.00452 

mean a = 0.00452 

analytic numeric 

C-H bond 

X Y Z X Y 
X 3.85106 1.34155 1.34155 X 3.85240 1.00115 
Y 1.34155 3.85106 1.34155 Y 1.00115 3.85240 
Z 1.34155 1.34155 3.85105 Z 1.00115 1.00115 

1.00115 
1.00115 
3.85240 

mean a = 3.85106 mean a = 3.85240 

Figure 7. Localized dipole polarizability tensors calculated analytically and 

numerically for CH4 in Bohrŝ  using a TZV(3d,3p) basis set. The mean is the trace/3. 
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Basis Set: TZV(p,d) 

analytic core poiarizability tensor 

X Y Z 
X 0.00127 0.00000 0.00000 
Y 0.00000 0.00149 0.00000 
Z 0.00000 0.00000 0.00156 

mean a = 0.00144 

analytic numeric 

lone pair on oxygen 

X Y Z X Y Z 
X 0.96352 0.00000 0.00000 X 1.40802 0.00013 0.00108 
Y 0.00000 1.72996 0.84955 Y 0.00000 1.76912 0.34297 
Z 0.00000 0.74910 1.07411 Z 0.00000 0.22904 1.02953 

mean a = 1.25586 mean ol = 1.39230 

O-H bond 

X 2.55700 
Y 0.00000 
Z 1.41728 

0.00000 1.48268 
0.31110 0.00000 
0.00000 1.59679 

mean a = i.48830 

X 2.11504 0.00000 1.38404 
Y 0.00101 0.27096 0.00093 
Z 1.02763 0.00000 1.63891 

mean a = i.34164 

Figure 8. Localized dipoie poiarizability tensors calculated analjmcally and 

numerically for H2O in Bohrs^ using a TZV(d,p) basis set. The mean is the trace/3. 



www.manaraa.com

198 

Basis Set: TZV(3p3ci) 

analytic core polarizability tensor 

X 0.00115 
Y 0.00000 
Z 0.00000 

0-00000 0.00000 
0.00125 0.00000 
0.00000 0.00130 

mean a = 0.00124 

analytic numeric 

lone pair on oxygen 

X Y z X Y z 
X 1.47825 0.00000 0.00000 X 1.94896 0.00016 0.00112 
Y 0.00000 2.35103 1.04967 Y 0.00000 1.94318 0.38858 
Z 0.00000 0.95519 1.92883 Z 0.00000 0.35164 1.86674 

mean a = 1.91937 mean a = 1.91962 

O-H bond 

X Y Z X Y z 
X 2.63907 0.00000 1.20894 X 2.16550 0.00000 1.05054 
Y 0.00000 0.87139 0.00000 Y 0.00066 1.27836 0.00062 
Z 1.05472 0.00000 1.76245 Z 0.58518 0.00000 1.82228 

mean a = 1.75764 mean a = 1.75538 

Figure 9. Localized dipole polarizability tensors calculated analytically and 

numerically for H2O in Bohrs^ using a TZV(3d,3p) basis set. The mean is the 

trace/3. 
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C-H bond 

Basis Set: TZV(p,d) Basis Set: TZV(3p,3d) 

X Y Z X Y z 
X 1.62372 0.00000 0.00000 X 2.50953 0.00000 0.00000 
Y 0.00000 1.62372 0.00001 Y 0.00000 2.50951 0.00002 
Z 0.00000 0.00000 6.83742 Z 0.00000 0.00002 6.53412 

mean a = 3.36162 mean a = 3.85106 

Figure 10. Analytic localized dipole polarizability tensors for a C-H bond in CH4 

projected onto the z-axis. Units are Bohrs^. The mean is the trace/3. 
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CHAPTER 8. SOLVATION OF THE MENSHUTKIN REACTION: 

A RIGOROUS TEST OF THE EFFECTIVE FRAGMENT MODEL 

A Paper to be submitted to the Journal of Chemical Physics 

Simon P. Webb and M. S. Gordon 

Abstract 

The recentiy developed effective fragment potential (EFP) method is used to study the 

effect of two, four, six, and eight solvating water molecules on the Menshutkin reaction 

between ammonia and methyl bromide. The EFP method reproduces all ab initio geometries 

and energetics for the two water case very accurately. Energetics from all ab initio single point 

energies at the EFP geometries for the four, six, and eight water cases are in good agreement 

with corresponding EFP energetics. In the gas phase the above Menshutkin reaction is 

kinetically highly unstable with a barrier of 34.0 kcal/mol at the RHF level with a double 4 

basis set with polarization and diffuse functions. An ion-pair product is found, in agreement 

with previous work, which is exothermic by 4.7 kcal/mol. The addition of solvating water 

molecules has the effect of lowering the barrier and increasing the exothermicity of the ion-pair 

product. For eight solvating EFP water molecules, the barrier is 20.3 kcal/mol and the ion-pair 

product is exothermic by - 31.4 kcal/mol. 



www.manaraa.com

I. Introduction 

201 

Modeling of solvation effects is one of the great challenges in computational chemistry. 

Continuum based methods i are widely used and are becoming increasingly sophisticated. 

Some of these methods now employ variable cavity shapes produced by a union of spheres 

centered on each atom of the solute, and account for effects such as cavitation energy, 

dispersion, and repulsion.2 The continuum approach has proved to be very important Even the 

simplest single sphere self-consistent reaction field method has provided useful information 

concerning solvent effects on suitable systems.^ The more sophisticated methods are able to 

handle a wide range of molecules and reactions.^ However, continuum methods are unable to 

identify the role of individual solvent molecules in the solvation process, thereby precluding 

detailed analysis of the mechanism of solvation in the systems under smdy. 

Another approach to the solvation problem has been to characterize the ab initio gas 

phase potential energy surface and then introduce discrete ab initio waters one at a time forming 

a supermolecule. While this approach has 3delded fundamental information on the solvation 

process^ it quickly becomes prohibitively expensive if more than a handfiil of solvent 

molecules ate included. The importance of the discrete solvent molecule approach is reflected in 

the development and increasing popularity of hybrid QM/MM methods which treat the solute 

with ab initio or semi-empirical techniques and the solvent molecules with cheaper molecular 

mechanics force fields.^ 

The effective fragment potential (EFP) method^ has recently been developed. It 

accounts for solvent effects on chemical reactions by treating solute molecules fully ab initio 

and introducing discrete solvent molecules through potentials added as one-electron terms 

directly to the ab initio Hamiltonian. The potentials are derived directly from separate ab initio 

calculations on water and water dimer. This method has akeady shown that it can reproduce all 
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ab initio RHF relative energies and geometries in a study on the internal rotation in ground state 

formamide with up to 6ve waters.̂  It has also successftiUy reproduced the results of all ab 

initio MCSCF calculations on excited state formamide with two water molecules, lo Recendy, 

Day and Pachteri i have reported results of a study on aqueous glutamic acid^ using the EFP 

method to model the effects of up to ten water molecules. In this paper we fiirther test the EFP 

method by its applicadon to the Menshutkin reaction.i2 This reaction in which neutral reactants 

lead to separated ion products, is the most stringent test of the method to date. 

In 1890 Menshutkin smdied the reaction between the allqrl nitrides and alkyl halides 

(Rl) .  

R3N + RX R4N+ X' (Rl) 

He found that the reaction rate increases dramatically when the polarity of the solvent is 

increased. 12 This increase in reaction rate with solvent polarity is attributed to the stabilization 

of the reaction path to ion separation, by the solvent. The reaction (R2) between ammonia and 

alkyl halide 

NH3 + RX RNH3+ X- (R2) 

is an example of a Menshutkin reaction and is an intermediate step in the formation of primary 

amines, 13 an important industrial process. Investigating the effect of solvation on the 

Menshutkin reaction, then, is important in terms of understanding the fundamental process of 

solvation and in terms of industrial applications. Consequently, there have been a number of 

theoretical investigations of the solvent effect on this reaction. 

Sola et al have smdied the reaction between ammonia and methyl bromide, In the 
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gas phase the reactants were found to form an "ion-pair ceactant" which lies in a shallow well 

(-2.8 kcal/mol relative to separated reactants). The transition state is found to be high in energy 

(23.3 kcal/mol relative to separated reactants) leading to an "ion-pair product" which lies in a 

shallow well (20.7 kcal/mol relative to separated reactants), and finally highly unstable 

separated products are predicted (103.8 kcal/mol relative to separated reactants). They 

introduced discrete solvent molecule effects by addition of two ab initio waters and in separate 

calculations modeled the bulk effects of water, methanol, and hexane using a continuum 

method.2 The addition of two discrete waters; one associated with the NH3 group the other 

with the Br, resulted in an earlier and lower energy transition state (10.8 kcal/mol relative to 

separated reactants), and stabilized the ion-pair product (- 0.2 kcal/mol relative to separated 

reactants) and the separated ions (59.2 kcal/mol relative to separated reactants), with the overall 

process remaining endothermic. The continuum model gives the free energy of activation of the 

hydrated reaction as 8.3 kcal/mol and predicts the separated products to be stable with respect 

to reactants by 44.0 kcal/mol. With hexane as the solvent, formation of ion-pair reactants and 

products are predicted, along with a high energy transition state and endothermic final product 

ions, illustrating the effect of solvent polarity. 

Gao and Xia used a QM/MM approach in statistical mechanical Monte Carlo 

simulations to smdy the ammonia - methyl chloride Menshutkin reaction in water solution. 

The solute is modeled using the semi-empirical AMI method; the 256 solvent water molecules 

by the TIP3P potential. The predicted free energy of activation is 26.3 ± 0.3 kcal/mol which 

compares favorably with the experimental value of 23.5 kcal/mol for the related iodide system. 

Gao et al contend that the large discrepancy with the predicted value of Sola et al suggests that 

the description of discrete solute-solvent interactions is necessary in this system. For the 

reaction free energy Gao et al predict - 36 kcal/mol; indicating an exothermic reaction in water 

solution. 

Maran, Pakkanen, and Karelsoni^ have studied the reaction between anmionia and the 
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alkyl halides - methyl chloride, methyl bromide, and methyl iodide, using the semi-empirical 

method AMI and describing solvent e£fects (water and hexane) through a multi-cavity self-

consistent reaction field method. Their calculated barrier (no entropy effects included) for the 

chloride, bromide, and iodide systems are 21 kcal/mol, 25 kcal/mol. and 37 kcal/mol, 

respectively. More recently, the same authors have carried out ab initio calculations to examine 

in detail just the gas phase reactions. ̂ 8 

In this paper we report results of a study in which we apply the EFP method to micro-

solvation of the reaction between ammonia and methyl bromide. 

NH3 + CH3 CHsNHs-^ Br (R3) 

We examine the EFP method's accuracy by comparison to all ab initio calculations and also 

explore the effects of 0-8 water molecules on the reaction profile. 

II. Computational Details 

The gas phase potential energy surface of the reaction between ammonia and methyl 

bromide was explored using restricted Hartree-Fock (RHF) and second-order perturbation 

theory (MP2)i9 geometry optimization methods. For solvated systems only RHF calculations 

were carried out. Characterization of all stationary points was achieved by calculating and 

diagonaUzing the energy second derivative matrix (hessian). A positive definite hessian (no 

negative eigenvalues) indicates a minimum on the potential energy surface; one negative 

eigenvalue indicates a transition state. 
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For hydrogen, carbon, nitrogen, and oxygen, the double § basis set of Dunning and 

Hay 20 was used; for bromine the double 4 basis of Binning and Curtiss was employed.-i P 

polarization functions were added to hydrogens, and d polarization functions were added to all 

heavy atoms. A diffuse sp shell was also added to bromine. Exponents used are the defaults in 

GAMESS.22 Collectively this basis set is referred to as DZVP. 

Water molecules were added to the system through use of the effective fragment 

potential (EFP) method.^-^ The method is described in detail in a previous paper, ^ and a 

summary is given in an application to the solvated internal rotation of formamide.^ Also 

summarized in the latter paper are the geometry search procedure, and the intrinsic reaction 

coordinate (IRC) procedure which follows the minimum energy path from transition states to 

minima. Both techniques are utilized in this study. Numeric calculation of the hessian is carried 

out through double displacements of the stationary point geometries using analytic calculation 

of the energy gradients. 

For comparison, ab initio waters were added in a supermolecule approach. For the two 

water system all ab initio geometry optimizations and hessians were done to test the accuracy of 

the EFP geometries, relative energies, and calculated frequencies. For larger numbers of waters 

(4 - 8) all ab initio single point energy calculations were performed to test relative energies. 

in. Results and Discussion 

(a) Gas Phase Surface. In order to establish a point of reference, we first explore 

and characterize the gas phase potential energy surface of the reaction between ammonia and 

methyl bromide. Results of RHF/DZVP and MP2/DZVP geometry searches are presented in 

Figures I and 2, and Table 1. The minimum energy path, found by an IRC procedure.^ linking 
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the ion-pair reactant with transition states and ion-pair products is shown in Figure 3. 

The first part of the surface; that is the ion-pair reactant, transition state (1), and ion-pair 

product (I), is qualitatively the same as that predicted by Sola et al.i'^ However, Table I 

shows some quantitative discrepancies. The ion-pair reactant to transition state barrier is found 

to be - 10 kcal/mol higher than that in the earlier study. The relative RHF/DZVP energy of the 

transition state and ion-pair product agrees closely with the earlier work (8.4 kcal/mol 

compared to 8.9 kcal/mol). Consequendy, the ion-pair product itself is predicted to be - 10 

kcal/mol less stable (relative to separated reactants) than predicted by Sola et al. Tests done 

during the course of this study show that the small size of the underlying 3-2IG basis set used 

by Sola is the main source of these energy discrepancies. This is confirmed below via 

comparison with results from calculations is with basis sets more comparable in quality to those 

used in the present study. Inclusion of polarization and diffuse fimctions is found to make a 

considerable difference to predicted geometries, but the effect on relative energies is found to 

be relatively small. 

Dynamic correlation introduced through MP2 does result in some contraction in bond 

lengths, but makes little difference to the energetics. Therefore, RHF is considered adequate 

for study of ±e solvated system. Mulliken populations (see Table 2), while not meaningfiil in 

an absolute sense, do show that the Br accumulates charge as the reaction proceeds through the 

first transition state. It has acquired a charge of - - 0.9 in the ion-pair product (1). 

Normally, from the ion-pair product the potential energy surface is assimied to proceed 

directly to the highly unstable separated products; NH3CH3+ + Br -; however, Maran et 

alls recently discovered a second ion-pair product, at the RHF, OSD, MP2, and MP3 levels 

using a 6-3IG* basis set, with the Br direcdy interacting with an NH3 hydrogen via a 

hydrogen bond. This latter species is predicted to be thermodynamically stable with respect to 

separated reactants. We also consider this species in which the bromine is weakly bound to an 
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NHs hydrogen. Figure 2 and Table 1 show that there is a very small barrier of 0.3 kcal/mol at 

the RHF/DZVP level of theory leading from the Csv ion-pair leactant to a Cs transition state 

(Figure 3 indicates that this is little more than a shoulder on the PES) in which the Br has 

moved in toward a hydrogen.This transition state leads to a Cj minimum, described above, 

which is stable with respect to separated reactants by 6.5 kcal/mol at the RHF/DZVP level of 

theory. The separated products lie 105.9 kcal/mol above this minimunL Dynamic correlation 

effects on relative energies are more pronounced in this region of the surface with 

destabilization of the Cs transition state by - 3 kcal/mol and stabilization of the Cs ion-pair 

product by - 5 kcal/mol due to the MP2 correction. However, RHF still provides a reasonable 

description of the process. Mulliken populations (see Table 2) indicate that the charge on the Br 

is lowered considerably on formation of the second ion-pair product due to the formation of ±e 

strong Br—H-N hydrogen bond. 

The RHF and MP2 energetics calculated in this study (Table I) and those from Maran, 

Karelson, and Pakkanen^s are in reasonable agreement They predict a first transition state 

30.8 and 30.3 kcal/mol relative to the ion-pair reactant at RHF/6-3IG* and MP2/6-3IG*, 

respectively. For the second ion-pair product they predict - 6.5 and - 8.8 kcal/mol relative to 

the ion-pair reactant at RHF/6-3 IG* and MP2/6-3IG*, respectively. Our results for this 

particular Menshutkin reaction (R3), then, confirm their conclusion that the gas phase reaction 

to form the ion-pair product (2) (see Figure 2) is thermodynamically favorable (i.e. exothermic) 

but kinetically highly unfavorable, due to the high (> 30 kcal/mol) initial barrier. 

(b) Two Waters. Next, two ab initio waters were introduced. No symmetry 

constraints were placed on the system during the geometry optimizations. Figure 4 and Table 3 

show the structures and relative energies of what were found to be lowest energy species on 

the potential energy surface. The structures were found by first identifying the lowest energy 

transition state with two water molecules and then performing IRC calculations by first 
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stepping out forward and backward from the transition state along the imaginary mode leading 

to reactant and product minima. Also shown in Figure 4 and Table 3 are the corresponding 

structures and energetics from calculations with the two ab initio waters replaced by two EFP 

waters. The EFP method is found to do an excellent Job of reproducing the all ab initio results. 

All EFP bond lengths are within 0.06 A of those predicted ab initio and most agree much more 

closely than this upper bound. EFP relative energies are found to agree with the all ab initio 

relative energies to within 0.5 kcal/mol. The EFP and ab initio imaginary frequency at the 

transition state are also in excellent agreement 

The effect of two water molecules is found to be dramatic (see Table 3). The barrier 

from ion-pair reactant to transition state is lowered by 11.8 kcal/mol to a value of 22.2 kcal/moi 

and the ion-pair product is now stable with respect to the ion-pair reactant by 19.2 kcal/mol. 

The transition state geometry (see Figure 4) shows that it is occurring earlier in the reaction, an 

effect also observed by previous smdiesi'^ and predicted by the Hammond posmlate. 

Figure 5 shows the all ab initio and the two EFP water mininiiim energy paths (MEPs). 

Both curves are relative to the respective ion-pair reactant minimum. Note that the EFP MEPS 

does not go to zero at its end point indicating that it is in a shallow well above the tme 

minimum. The two MEPs map onto each other very closely up through the transition state but 

diverge by up to - 5 kcal/mol on the part of the surface representing the migration of the 

bromine anion. 

The MEPs for the two water molecule case (see Figure 5) show that two waters are 

sufficient to produce an exothermic ion-pair product complex directly. Inspection of the ion-

pair product structure (see Figure 4) reveals that the MEP from the transition state leads directly 

to the arrangeihent seen in the gas phase (the migration mentioned above), with the bromine 

hydrogen bonded to an amine hydrogen. The presence of the two waters has removed the small 

barrier to this process seen in the gas phase. The stability of the ion-pair product solvated with 

two waters (exothermic by - 19 kcal/mol relative to the ion-pair reactants), then, is partly due 
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to the same effect seen in the gas phase and pardy due to the waters which hydrogen-bond to 

the charged bromine and amine hydrogen. 

(c) Four and Six Waters. Having shown that the EFP method reproduces all ab 

initio geometries to a high degree of accuracy geometry optimizations and IRC calculations 

with additional water molecules have been performed only with the EFP method. 

As the number of water molecules increases, the number of stationary points on the 

potential energy surface will increase rapidly. One advantage of the Menshutkin reaction is that 

the solute molecules must be co-linear in the transition state. The approach is therefore the same 

as with two waters: attempt to find the lowest energy transition state and follow MEPs to 

determine reactants and products. 

In an attempt at systematic addition of waters, the starting points for the four and six 

water systems were obtained by addition of water molecules to the transition state found 

previously for the two water system. This was done in a symmetric fashion, resulting in a 

transition state for the four water system which is essentially Cj, and a six water transition state 

which possesses a nearly C3 axis of rotation (see Figures 6 and 7). 

To check the accuracy of the EFP method for these four and six water cases all ab initio 

RHF/DZVP single point energies were calculated at the EFP geometries. Again agreement is 

found to be excellent. For the four water case relative energies are found to agree to within 0.6 

kcal/mol and for the six water case to within 3.0 kcal/mol. 

The effect of the presence of four EFP waters is a reduction of the ion-pair reactant -

transition state barrier by 7.9 kcal/mol compared to that in the two EFP water case (see Table 

3). The resulting barrier is only 13.7 kcal/mol. Figure 6 shows that the four water transition 

state occurs earlier than the two water transition state as expected. The exothermicity of the ion-

pair product is increased by 13.5 kcal/mol, compared to the two water case; with four waters it 

is exothermic by 33.9 kcal/mol relative to the ion-pair reactant. Again the waters enable the 
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barrierless migratioii of the Br to the amine group where it is hydrogen bonded to an amine 

hydrogen and two water hydrogens. 

The six water system based on the approximately C3 transition state does not follow the 

predicted trend based on the two and four water results. The ion-pair reactant - transition state 

barrier has increased by 8.4 kcal/mol compared to the four water case, and the exothermicity of 

the ion-pair product has decreased by 13.5 kcal/mol. This can be explained using the structures 

in Figure 7. The transition state appears earlier in the reaction than in the two and four water 

cases, as one would expect The larger barrier, then, must be explained by preferential 

stabilization by the water molecules of the ion-pair reactant relative to the transition state. It 

appears that six waters allow more flexibility in the ion-pair reactant which no longer has a co-

linear arrangement of NH3 and CHsBr as it did in the two and four water cases. {Presumably 

this added flexibility made possible by the solvent is the reason for preferential stabilization of 

the ion-pair reactant over the transition state. For the ion-pair product the opposite is true; the 

symmetric arrangement of waters has constrained NH3CH3+ and Br- to a co-linear 

arrangement, no longer allowing the barrierless migration of Br to the amine hydrogen. The 

result is a less exothermic reaction (see Table 3). 

To determine if there are more energetically favorable arrangements of the water 

molecules, alternative non-symmetric arrangements of solvent molecules were explored. Figure 

8 shows a non-symmetric four water transition state geometry and the ion-pair reactant and 

product found by following the MEPs from this transition state.This results (Table 3) in an 

increase in the barrier to the transition state from the ion-pair reactant, by 4.2 kcal/mol, to 18.0 

kcal/mol and a decrease in the exothermicity of the reaction, by 7.7 kcal/mol, to - 26.2 

kcal/mol. In order to make a meaningful comparison, we must compare not only the barrier 

heights and exothennicities but also the relative energies of the symmetric and non-symmetric 

cases. Figure 9 shows the two MEPs for these four water systems. Both curves are plotted 

relative to the energy of the ion-pair reactant obtained from the non-symmetric transition state 
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(Figure 8). The plots show that the ion-pair reactant obtained from the non-symmetric 

transition state is - 4 kcal/mol more stable than that obtained from the symmetric transition 

state, the transition states themselves are nearly isoenergetic, and the ion-pair product obtained 

from the symmetric transition state is - 4 kcal/mol mote stable than that obtained form the non-

symmetric transition state. Taking the lowest energy structures to determine the energetics, 

gives a barrier of 17.5 kcal/mol and an ion-pair product exothermic by 30.1 kcal/mol. 

The six water non-symmetric system (see Rgure 10) has a transition state with a ring, 

or crown, of five hydrogen-bonded waters, with two of the waters also hydrogen-bonded to 

bromine. The sixth water is outside the ring but is hydrogen bonded to it and also to one of the 

amine hydrogens. Table 3 shows that in this non-symmetric six water system the barrier firom 

ion-pair reactant to transition state is 16.2 kcal/mol, a reduction of 6.0 kcal/mol compared to the 

synraietric system. The ion-pair product is exothermic by - 28.9 kcal/mol, a stabilization of 8.5 

kcal/mol relative to the symmetric system. The MEPs shown in Figure 11 are plotted relative to 

the ion-pair reactant obtained from the non-symmetric transition state. The two ion-pair 

reactants are almost isoenergetic (there is a difference of only l.O kcal/mol). The non-

symmetric transition state, however, is considerably more stable than its symmetric counterpart 

(by 7.0 kcal/mol) and the corresponding ion-pair product is 9.5 kcal/mol more stable than the 

symmetric analog. The non-symmetric surface is therefore clearly more favorable. 

Returning to Table 3 and Figures 9 and 11, one may compare the most favorable four 

and six water systems to see that the four water case is still slightly favored. This may mean 

that the increase in stabilization is not monotonic with number of water molecules, or that more 

arrangements of solvent molecules must be considered. 

(d) Eight Waters. The eight water transition state was found to have five waters in a 

crown arrangement like that seen in the non-symmetric six water case, with the three remaining 

waters forming a chain along the underside of the co-linear solute (see Figure 12). The ion-pair 
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reactant - transition state barrier is calculated to be 20.3 kcal/mol, and the ion-pair product is 

exothermic by 31.4 kcal/mol (see Table 3). The transition state occurs earlier than that in the 

non-symmetric six water structure (see Figure 10); however, any resulting stabilization of the 

transition state appears to be fudging by the increased barrier height) offset by the more 

effective hydrogen-bonding in the eight water cases between the amine hydrogens and water 

oxygens (compare the ion-pair reactants in Figure 12 and 10). The ion-pair product retains the 

amine hydrogen - bromine interaction. Figure 13 shows the MEPS for the eight water system. 

For the eight water case the number of stationary points on the potential energy surface 

will be very large. It is only possible to ensure that the most favorable geometric arrangements 

have been found by a systematic sampling of the phase space. This would require use of 

molecular dynamics (MD), Monte Carlo (MQ, or a genetic algorithm (GA) methods. These 

methods are presently being interfaced with the EPF method. 

IV. Timings 

The EPF method was to developed to model solvent effects accurately and cheaply. We 

have demonstrated above the accuracy of the method. In order to demonstrate how inexpensive 

the EFF method is in comparison to corresponding all ab initio calculations we present timings 

in Table 4. 

The EPF method scales linearly with the number of water molecules; timings for the all 

ab initio calculations increase much more rapidly. For the eight water case the time required for 

an all initio energy + gradient calculation is 14 times that required for the EFF method. Even 

more impressive is the fact that the time for the all initio calculation for the eight water 

system is 26 times that required for the zero water case, while the EFF time only increases by a 

factor of two. 
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The last two columns in Table 4 show the increase in wall clock time required which 

results from each addition of two water molecules to the calculation. These times do not 

continuously increase down the columns, with the increase in the number of water molecules, 

as the number of SCF cycles required is not consistent between these calculations. For the all 

ab initio calculations the number of SCF cycles required varies between 10 and 14; for the EFP 

calculations the variation is between 10 and 12 SCF cycles. Comparison of the ab initio and 

EFP A Wall Qock times clearly demonstrates how inexpensive the addition of water molecules 

in the EFP method is relative to all initio calculations. 

V. Conclusions 

We have tested the recendy developed effective fragment potential (EFP) method, for 

modelling solvent effects, on the ammonia plus methyl bromide Menshutkin reaction. The 

method was shown to reproduce the all ab initio geometries and energetics for the reaction with 

two solvating water molecules very accurately. Comparison of EFP energetics with all ab initio 

single point energies at the EFP geometries for four, six, and eight solvating waters also shows 

good agreement. Timings presented show the EFP method to be an inexpensive way to model 

solvation effects very accurately. 

Calculations on the gas phase Menshutkin reaction confirm previous findings that an 

exothermic ion-pair product with the bromine anion hydrogen-bonded to an amine hydrogen 

exists (AE = - 4.7 kcal/mol for RHP) but the reaction is kinetically highly unfavorable with a 

barrier of 34.0 kcal/mol at the RHF/DZVP level. Dynamic correlation introduced through MP2 

was found to have only a small effect on the gas phase potential energy surface. 

With the addition of two water molecules the barrier is reduced to 22.5 kcal/mol and the 

i 



www.manaraa.com

214 

exothermicity is increased to -19.4 kcal/mol. For the four water the case the lowest energy 

surface produces a barrier of 17.5 kcal/mol and a ion-pair product which is exothermic by 

30.10 kcal/mol. For six waters the corresponding figures are 16.2 kcal/mol and 28.9 kcal/mol. 

Finally for eight solvating water molecules the barrier is 20.3 kcal/mol and the ion-pair product 

is exothermic by 31.4 kcal/mol. All the ion-pair products in these solvated systems contain the 

bromine anion - amine hydrogen interaction seen in the gas phase. 

For the four, six, and eight water systems studied it is clear that there will be many 

more possible geometric arrangements than those acmally considered. In order to ensure that 

the most favorable geometric arrangements have been found for these systems (and systems 

with additional waters) it will be necessary to systematically sample the phase space with, for 

example, molecular dynamics or Monte Carlo methods. 
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Table 1. Calculated energies (in kcal/mol) relative to the ion-pair reactant for the Menshutkin 

reaction (Rl) in the gas phase. 

RHF/DZVPa MP2/DZVPfl 

Separated Reactants 1.8 2.7 

Ion-Pair Reactant 0-0 0.0 

Transition State (1) 34.0 33.0 

Ion-Pair Product (1) 25.6 24.9 

Transition State (2) 25.9 28.2 

Ion-Pair Product (2) -4.7 -7.3 

Separated Ion Products 101.2 106.6 

a Geometry is optimized at this level of theory. 
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Table 2. RHF/DZVP Mulliken charges for stationary points on the potential energy surface of 

the Menshutkin (R3) in the gas phase. 

Mulliken Charges 

NH3 CH3 Br 

N H C H 

Separated 

Reactants 
- 0.747 0.249 - 0.283 0.158 -0.193 

Ion-Pair 

Reactant 
- 0-758 0.255 -0.251 0.158 - 0.229 

Transition 

State (1) 
- 0.730 0.319 -0.169 0.225 - 0.739 

Ion-Pair 

Product (1) 
- 0.524 0.352 - 0.272 0.219 -0.918 

Transition 

State (2) 

-0.512 0.357 (x2) 

0.348 

-0.251 0.191 (x2) 

0.248 

- 0.928 

Ion-Pair 

Product (2) 

-0.441 0.328 (x2) 

0.307 

- 0.253 0.186 (x2) 

0.138 

- 0.780 

Separated Ion 

Products 
- 0.478 0.375 - 0.248 0.201 - 1.000 
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Table 3. Calculated barriers and exothermicities of the MEnshutkin (B13) with 0-8 solvating 

water molecules. 

Relative Energy / Kcai/mol 

# Waters EFP Ab Initio 

0 I-P Reac- - 0.0 

T.S. - 34.0 

I-P Prod. - - 4.7 

2 I-P Reac. 0.0 0.0 

T.S. 22.5 22.2 

I-P Prod. - 19.4 - 19.2 

4 Symmetric I-P Reac. 0.0 0.0 

T.S. 13.7 14.3 

I-P Prod. - 33.9 - 33.9 

Non-Symmetric I-P Reac. 0.0 

T.S. 18.0 

I-P Prod. - 26.2 

6 Symmetric I-P Reac. 0.0 0.0 

T.S. 22.2 20.3 

I-P Prod. - 20.5 - 23.5 

Non-Symmetric I-P Reac. 0.0 

T.S. 16.2 

I-P Prod. - 28.9 

8 I-P Reac. 0.0 

T.S. 20.3 

I-P Prod. - 31.4 
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Table 4. All ah initio versus EFP method timings taken from calcululions carried out on an IBM RS6()00/350. Bracketed times are 

for direct SCF; others are for conventional SCF. All times are given in seconds. 

Energy Energy + Gradient 

CPU Wall Clock CPU Wall Clock A Wall Clock' 

# Solvating 

H20's 

# Basis 

Functions" 
Ab EFP Ab EFP Ab EFP Ab EFP Ab EFP 

0H2O 94 
266 

(14)6) 

596 

(1434) 

556 

(1706) 

889 

(1727) 

2H20 144 
1155 337 3141 817 2012 890 4006 1376 3117 487 

(4493) (1546) (4537) (1561) (5348) (2099) (5399) (2118) (3672) (391) 

4H20 194 
3334 366 9905 851 5182 1166 11768 1658 7762 282 

(15927) (1603) (16052) (1619) (17765) (2400) (17905) (2422) (12506) (304) 

6 H 2 0  244 
- 416 - 964 - 1493 - 2054 - 396 

(23008) (1877) (23205) (1895) (26460) (2954) (26684) (2981) (8779) (559) 

8 H 2 0  294 
- 430^ - 942'' - 1752 - 2275 - 221 

(39577) (1764)^ (39918) (1783)'' (44647) (3082) (45029) (3134) (18345) (153) 

<< for EFP # basis functions always 94. ^ took 1 less SCF cycle than previous calculations. lime difference resulting from each 

addition of two water molecules. 
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Ion-Pair Reactanc 

1-954 
(1.957) 

3.498 
(3J07) 

Transition State (I) 
1-923 2.612 

1.849) Q (2^62) 

Ion-Pair Product (I) 

1-539 3.080 
(1.547) (2J»73) 

Transition State (2) 

n ^-530 
(1.536)*  ̂

JS 3.181 

c F T  
(3.067) 

k * * * _ • _ 

2365 
(2J09) 

Q 

V Ion-Pair Product (2) 

% 

1.978*. 
(1.843) 

1.483 
Ul.48^ 

J 
o 

Cs b 

Figure 1. RHF/DZVP and MP2/DZVP optimized stationary point structures 

on the potential energy surface of the Menshutkin reaction (F13) in the gas phase. 

Bond lengths are in Angstroms. MP2 bond lengths are in bold type and brackets. 
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553.0 / cm 

(5S3.51 cm'*) 

93.53 /• cm"' 

(81.851 cm*') 

.separated 

rcaclanis 

1.77 

(2.67) 

Cj,. 

ion-pair rcaclanl 

separated 

products 

105.88 
(113.98) 

Iran.silion .sliiic (I) 

lran.sili(>n .slate (2) 

iun-n»ir product (I) 34.00 
(33.30) 

30.63 
(35.52) 

ion-pair product (2)( 

(cxothcnnic by •4.70 (-7.34) 
relative to ion-pair reactants) 

Figure 2. The RHF/DZVP and MP2/DZVP potential energy surfaces of the Menshutkin reaction (R3) 
in the gas phase. Energies are in kcal/mol. Harmonic vibrational frequencies are shown for transition states. 
Diagram is not to scale. MP2/DZVP values are in bold type. 
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Figure 3. The minimum energy path for the gas phase Menshutkin reaction 

(R3). Energy points are in kc^mol and are relative to the ion-pair reactants. 

IR = ion-pair reactants, TS(1) = first transition state, 

IP(I) = first ion-pair product, TS(2) = second transition state, 

IP(2) = second ion-pair product: see Figure 2. 
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( ) = fragment 

l.%7 

2.261 
(2J42) 

3388 
(3.351) 

Ion-Pair Reactant 

1.830 
(1.852) 

2.684 
(2.742) 

MuIIiken charges 

N -.783 (-.815) 
3H .783 (.823) 

C -251 (-.240) 
3H .509 (J02) 

Br -262 (-.271) 

MuIIiken charges 
N -.772 (-.810) 2.058 

3H .941 (.998) (2.054), 

C -.140 (-.133) 
3H .657 (.740) 

Br -.679 (-.712) 

Ion-Pair Product 

2.507 
(2.556) 

2.477 
(2.526) 

1.826 
(1.753) 

1.898 
(1.940) 

2.055 
(2.048) 

Transition State 536.5 i cm"' 

(538.0 i cm*') 

MuIIiken charges 

N -.440 (-J04) 
3H 1.015(1.117) 

C -.253 (-.247) 
3H .491 (.487) 

Br -.818 (-.853) 

Figure 4. RHF/DZVP all ab initio structures and MuIIiken charges for the 

Menshutkin reaction (R3) with two water molecules and the corresponding 

structures and charges with two EFP waters. Bond lengths are in Angstroms. 

Brackets indicate EIT method. 
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2 EFP water 

molecules MEP 

all ab initio MEP 

-20.0 -10.0 0.0 10.0 20.0 30.0 

Reaction Coordinate (amu"^bohr) 

40.0 

Figure 5. Minimum energy paths (MEPs) for the Mensbutkin reaction (R3) with 

two water molecules. The bottom curve was calculated all ab initio; the top curve 

was calculated with two EFP water molecules. 



www.manaraa.com

226 

Ion-Pair Reactant 

Transition State 499.6 i cm 

Ion-Pair Product 

Figure 6. RHF/DZVP stationary point structures on the potential energy 

surface of the Menshutkin reaction (R3) with four EFP water molecules. Bond 

lengths are in Angstroms; only selected symmetry unique bond lengths are shown. 
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2.732 

u 

Ion-Pair Reactant 

2J03 

2.666 

2.007 

Transition State 429.3 / cm 
1 

Ion-Pair Product 

Figure 7. RHF/DZVP stationary point structures (symmetric T.S. and product) on the 

potential energy surface of the Menshutkin reaction (R3) with six EFP water molecules. 

Bond lengths are in Angstroms; only selected symmetry unique bond lengths are shown. 
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2.491 2.097 2.600 

Transition State (513.2 i cm ) 

1.834 

1.774 

1.478 

1.884 2.240 

2.490 

Ion-Pair Product 

Figure 8. RHF/DZVP non-symmetric stationary point structures on the potential energy 

surface of the Menshutkin reaction (R3) with four EFP water molecules. Bond lengths are 

in Angstroms. 
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Figure 9. Minimum energy paths (MEPs) for the Menshutkin reaction (R3) with 

four EFP water molecules. One MEP was obtained from a symmetric transition 

state as the starting point; the other was obtained from a non-symmetric transition 

state as the starting point. Energy points are relative to the lowest energy ion-pair 

reactant (obtained from non-sjonmetric transition state). 
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Ion-Pair Reactant 

Transition State 

Ion-Pair Product 

Figure 10. RHF/DZVP non-symmetric stationary point structures on the potential energy 

surface of the Menshutkin reaction (R3) with six BFP water molecules. Bond lengths are 

in Angstroms. 
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Figure 11. Minimum energy paths (MEP's) for the Menshutkin reaction (R3) 
with six EFP water moleciUes. One MEP was obtained from a sjomnetric 

transition state as the starting point; the other was obtained from a non-symmetric 

transition state as the strting point. Energy points are relative to the lowest energy 

ion-pair reactant (obtained from non-symmetric transition state). 
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Ion-Pair Reactant 
2-657 

2.173 

Transition State 

1.915 

1.844 

Ion-Pair Product 

Figure 12. RHF/DZVP stationary point structures on the potential energy surface of the 

Menshutkin reaction (R3) with eight EFP water molecules. Bond lengths are 

in Angstroms. 
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Figure 13. Minimum energy path (MEP) for the Menshutkin reaction (R3) with 

eight EFP water molecules. Energy points are relative to the ion-pair reactant. 
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CHAPTER 9. CONCLUSIONS 

a) Specific Conclusions from Research Projects Presented. 

Analytic Derivatives. The results of the derivation of the closed shell frozen-core MP2 

analytic gradient expressions in Chapter 2 have been used to implement the method in the 

electronic structure code GAMESS. The complex nature of the effect of the frozen-core 

approximation on summation ranges and terms in these expressions demonstrates the necessity 

for such a derivation. This is especially true considering no such derivation exists in the 

literature. Now implemented, the method may be used in a wide range of applications. It is the 

method of choice for including the effects of dynamic electron correlation in the determination 

of molecular structure for closed shell systems. Once stationary points are found the analytic 

gradient allows their characterization, and also the calculation of harmonic frequencies, by 

numeric evaluation of the closed shell frozen-core MP2 energy second derivative. This is done 

by displacements of the nuclei along the x, y, and z axes and calculation of the energy gradient 

afrer each displacement. 

The effective fragment potential (EFP) method models solvent effects by the addition of 

one-electron terms to the ab initio Hansiltonian. One of these terms accounts for polarization of 

the EFP solvent by the ab initio solute. Subsequent repolarization of the solute by induced 

dipoles in the EFP solvent requires that an iterative self-consistent procedure be carried out. 

Part of the work in Chapter 7 consists of folding these iterations into the SCF iterations 

themselves, resulting in a factor of two speed up over calculations done using the original 

method. The localized orbital dipole polarizabilities which are used to include these polarization 

effects were originally calculated using a numerical finite difference method. An analytic 

method for calculating these tensors is derived in Chapter 7. The analytic method has several 

advantages over the numeric finite-field method. The numeric method is tedious and 

cumbersome for systems with more than a few atoms and is not easily automated. Also, the 
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analytic method produces more symmetric and more transferable localized orbital dipole 

polarizabilities. 

Transition Metal Chemistry. Titanium is an early first row transition metal. It contains 

the same number of valence electrons as carbon; their respective electron configurations are 

4s23d2 and 2s22p2. However, Chapter 3 demonstrates the very different behavior of these two 

elements. TiH; is found to dimerize with no barrier forming double and triple hydrogen 

bridged dimers which are exothermic by up to ~ 46 kcal/mol. This is a result of the electron 

deficiency of titanium; that is, in an analogous manner to boron in diborane, dimerization 

occurs because of titanium's desire to fill its d-shell. The very flat surface between Ti2H8 

isomers seen in Chapter 3 demonstrates that the two titanium centers allow the positions of the 

hydrogens to change with little or no energy penalty. Calculated vibrational fiequencies suggest 

that it is possible that Ti2H8 isomers may have been observed in matrix isolation experiments. 

If one removes two hydrogens from Ti2H8 to give the molecule Ti2H6 (Chapter 4), 

which has two electrons available for bonding, a Ti-Ti bond does not form in any of the five 

isomers found. In the D2h isomer it was shown that this is due to unfavorable repulsive 

interactions between the Ti-Ti bond (if it were to form) and the Ti-H-Ti bridges. In fact, the 

most stable isomers of Ti2H6 contain unpaired electrons with small isotropic singlet-triplet 

energy gaps of the order of 0.3 - 1.5 kcal/mol. Calculated vibrational frequencies for the 

isomers of TiiHe suggest that these dimers may also have been observed experimentally. 

The D2h TiiHfi isomer serves as a good model for many di-titanium (HI) bridged 

compounds. The singlet - triplet energy gap in this model compound was examined in more 

detail in Chapter 5 with the inclusion of effects due to spin-orbit coupling. This is the first time 

that ab initio techniques have been used to calculate and identify spin-orbit coupling interactions 

in these types of di-metal systems. According to the calculations, the splitting of the triplet Ms 

= 0 and Ms = ±1 components is due almost entirely to the angular momentum operator 
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perpendicular to the Ti-H-Ti bridge, thereby explaining why experimentalists have been able to 

estimate the Ti-Ti separation accurately in similar compounds without taking spin-orbit 

coupling into account 

The introduction of halides into simple titanium systems (Chapter 6) has a large effect. 

The exothermicity of the TiX4 (X = F, Q, Br) dimers is much reduced over the hydride 

counterpart. Within the halide series the fluoride dimer is twice as strongly bound as the 

chlorine and bromine dimers. This is consistent with non-moaotonic melting and boiling point 

trends seen in the titanium tetrahalides. The structures of the dimer minima: bridging bonds in 

the fluoride and weakly interacting tetrahedral units in the chloride and bromide are consistent 

with available experimental structural details of the titanium halides in the gas and solid phase. 

Transition states representing paths to halide exchange offer an explanation of unexpected line 

widths seen in NMR experiments on TiCU. 

Solvation Studies. In Chapter 8 the effective fiagment potential (EFP) method is shown 

to accurately and cheaply reproduce all ab initio calculations on the Menshutkin reaction 

between armnonia and methyl bromide with two, four, six, and eight solvating waters. The 

effect of solvating waters on the gas phase energy surface is found to be a reduction in barrier 

height from ion-pair reactants to transition state and an increase in exothermicity of ion-pair 

products. 

b) General Conclusions. Work in the areas of energy derivative theory, transition 

metal chemistry, and solvation effects has been presented in this dissertation. This work 

represents a basis for further research and advancement in each of these three areas. 

The derivation of the closed shell frozen-core MP2 analytic gradient is presented in a 

clear, methodical manner. Enough detail is included to demonstrate the techniques and special 

considerations required when dealing with derivatives of molecular orbital based perturbative 

methods which include frozen cores. It is expected, then, that this work will facilitate the 
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inclusion of the frozen-core approximation in the analytic gradient of the multiconfigurational 

quasidegenerate perturbation (MCQDPT) method, which is currently being implemented in 

GAMESS by collaborators. 

The levels of ab initio theory required to describe certain simple titanium systems have 

been established. This knowledge may applied, in future smdies, to more complex and 

experimentally accessible titanium systems for which the simple molecules serve as models. 

The application of the EFP method, for modelling solvation effects, to the Menshutkin 

reaction between ammonia and methyl bromide represents conformation of the method's 

accuracy and efficiency. The success of the method clears the way for fluther development 

such as phase space sampling through, for example, molecular dynamics, and extension of the 

model to include conielation and dispersion effects. 

Finally, to date, ab initio investigation of even the most simple aqueous transition metal 

chemistry is untouched territory. With the combination of the three areas of research, on which 

work was presented in this dissertation, will come exciting projects such as the investigation of 

molecular structure, electronic structure, and magnetic properties of di-transition metal 

complexes in solution. 
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